

Analizador de redes eléctricas y calidad de suministro

MANUAL DE INSTRUCCIONES

(M98206501-01-10B)

Una conexión incorrecta del equipo puede producir la muerte, lesiones graves y riesgo de incendio. Lea y entienda el manual antes de conectar el equipo. Observe todas las instrucciones de instalación y operación durante el uso de este instrumento.

La instalación, operación y mantenimiento de este instrumento debe ser efectuado por personal cualificado solamente. El Código Eléctrico Nacional define a una persona cualificada como "una que esté familiarizada con la construcción y operación delequipo y con los riesgos involucrados".

ATENCIÓN

Consultar el manual de instrucciones antes de utilizar el equipo.

En el presente manual, si las instrucciones precedidas por este símbolo no se respetan o realizan correctamente, pueden ocasionar daños personales o dañar el equipo y /o las instalaciones.

Death, serious injury, or fire hazard could result from improper connection of this instrument. Read and understand this manual before connecting this instrument. Follow all installation and operating instructions while using this instrument.

Installation, operation, and maintenance of this instrument must be performed by qualified personnel only. The National Electrical Code defines a qualified person as "one who has the skills and knowledge related to the construction and operation of the electrical equipment and installations, and who has received safety training on the hazards involved."

ATTENTION Consult the instruction manual before using the equipment.

In this manual, if the instructions preceded by this symbol are not met or done correctly, can cause personal injury or equipment damage and / or facilities.

Un branchement incorrect de l'appareil peut entraîner la mort ou des lésions graves et peut provoquer un incendie. Avant de brancher votre appareil, lisez attentivement le manuel et assurez-vous de bien avoir compris toutes les explications données. Respectez toutes les instructions concernant le mode d'installation de l'appareil et son fonctionnement.

L'installation, le fonctionnement et la maintenance de cet appareil doivent être réalisés uniquement par du personnel qualifié. Le code électrique national définit en tant que personne qualifiée "toute personne connaissant le montage et le fonctionnement de l'appareil ainsi que les risques que ceux-ci comportent ".

ATTENTION Consulter le manuel d'instructions avant d'utiliser l'appareil

Si les instructions suivantes, précédées dans le manuel d'un symbole, ne sont pas respectées ou sont réalisées incorrectement, elles pourront provoquer des dommages personnels ou abîmer l'appareil et/ou les installations

Un collegamento errato del dispositivo può provocare morte, lesioni gravi nonché rischio di incendio. Prima di collegare il dispositivo leggere attentamente il manuale. Osservare tutte le istruzioni relative all'installazione e all'operatività durante l'uso di questo strumento. L'installazione, operatività e manutenzione di questo strumento devono essere realizzate solamente da personale qualificato. Il Codice Elettrico Nazionale definisce una persona qualificata come "colui che ha familiarità con la costruzione e operatività del dispositivo e con i rischi che ne possano derivare".

ATTENZIONE Consultare il manuale di istruzioni prima di utilizzare il dispositivo

Qualora le istruzioni riportate nel presente manuale precedute da questo simbolo non vengano osservate o realizzate correttamente, possono provocare danni personali o danneggiare il dispositivo e/o gli impianti.

WARNHINWEISE / SYMBOLE

Durch einen nicht sachgemäßen Anschluss der Anlage können Tod, schwere Verletzungen und Brandrisiko hervorgerufen werden. Bevor Sie die Anlage anschließen, lesen Sie bitte das Handbuch durch und machen Sie sich dessen Inhalt klar. Beachten Sie bei Einsatz dieses Instrumentes sämtliche Installations- und Betriebshinweise.

Installation, Betrieb und Wartung dieses Instrumentes müssen ausschließlich von entsprechend qualifiziertem Personal vorgenommen werden. Von dem nationalen Elektrocode wird eine qualifizierte Person als jemand definiert, "der mit der Konstruktion und dem Betrieb einer Anlage und der damit verbundenen Risiken vertraut ist".

ACHTUNG Vor Inbetriebnahme der Anlage ist das Handbuch zu lesen.

Werden die in dem vorliegenden Handbuch mit diesem Symbol versehenen Hinweise nicht beachtet oder falsch verstanden, können Personenschäden und Schäden an der Anlage und/oder den Installationen verursacht werden.

Uma ligação incorrecta do equipamento pode provocar a morte, lesões graves e risco de incêndio. Leia e compreenda o manual antes de ligar o equipamento. Observe todas as instruções de instalação e operação durante o uso deste aparelho.

A instalação, operação e manutenção deste aparelho devem ser levadas a cabo exclusivamente por pessoal qualificado. O Código Eléctrico Nacional define uma pessoa qualificada como "uma pessoa que se encontre familiarizada com a construção e operação do equipamento assim como com os riscos inerentes"

ATENÇÃO

Consultar o manual de instruções antes de utilizar o equipamento.

No presente manual, se as instruções que precedem este símbolo não forem respeitadas ou realizadas de forma correcta, podem ocorrer ferimentos pessoais ou danos no equipamento e/ou nas instalações.

INDICE MANUAL

1	. INTRODUCCIÓN	
	1.1 DESCRIPCIÓN	11
	1.2 MODELOS DISPONIBLES	12
	1.3 TARJETAS DE EXPANSIÓN	13
	1.4 CODIFICACIÓN DE OTROS PARÁMETROS	13
	1.5 PARÁMETROS DE ANÁLISIS	14
	1.6 ACCESORIOS	14
2	. INSTALACIÓN	
	2.1 COMPROBACIONES A LA RECEPCIÓN	15
	2.2 LUGAR DE MONTAJE	15
	CONDICIONES AMBIENTALES	. 15
	CONSIDERACIONES	. 15
	2.3 MÉTODOS DE INSTALACIÓN	16
	2.3.1 PROCEDIMIENTO	. 16
	2.4 CONEXIÓN DEL EQUIPO	18
	2.4.1 ALIMENTACIÓN AUXILIAR	. 18
	2.4.2 TENSIÓN NOMINAL EN CIRCUITO DE MEDIDA DE TENSIÓN	. 18
	2.4.3 CORRIENTE NOMINAL EN CIRCUITO DE MEDIDA DE CORRIENTE	. 18
	2.4.4 CONDICIONES DE TRABAJO	. 18
	2.4.5 SEGURIDAD	. 19
	2.4.6 CARACTERÍSTICAS TÉCNICAS	. 19
	2.5 DESCRIPCIÓN BORNES	20
	2.5.1 ETIQUETA DE CONEXION DE TENSIONES Y TI	. 20
	2.5.2 ETIQUETA DE ALIMENTACIÓN Y COMUNICACIONES	. 20
	2.6 ESQUEMAS DE CONEXIONADO DE MEDIDA	21
	2.6.1 - 4 TI Y 5 REFERENCIAS DE TENSIÓN	. 21
	2.6.2 - 4 TI Y 4 REFERENCIAS DE TENSIÓN	. 21
	2.6.3 - 3 TI Y 4 REFERENCIAS DE TENSIÓN	. 22
	2.6.4 - 3 TI Y 3 REFERENCIAS DE TENSIÓN	. 22
	2.6.5 - 4 TI Y 2 TRANSFORMADORES DE TENSIÓN	. 23
	2.6.6 - 3 TI Y 2 TRANSFORMADORES DE TENSIÓN	. 23

🔲 CIRCUTOR

2.6.7 - 2 TI Y 2 TRANSFORMADORES DE TENSIÓN	24
2.7 CONEXIONADO DE ALIMENTACIÓN	24
3. FUNCIONAMIENTO	
3.1 DESCRIPCIÓN FÍSICA	25
3.1.1 FRONTAL	25
3.1.1.a. Pantalla	26
3.1.1.b. Teclas de función	26
3.1.1.c. Teclas de desplazamiento	26
3.1.1.d. Tecla 5E7	26
3.1.1.e. Menús superiores e inferiores	26
3.1.1.f. Nombre del módulo	27
3.1.1.e. Iconos	27
3.2. PUESTA EN MARCHA	28
4. CONFIGURACIÓN	
4.1 MEDIDA	29
4.2 CALIDAD	31
4.2.1. CALIDAD	31
4.2.2. EVENTOS	32
4.3 DEMANDA	34
4.4 TARIFAS	36
4.5 BORRAR	38
4.6 COMUNICACIONES	39
4.7 TARJETAS DE EXPANSIÓN	40
4.7.0. INSERCIÓN DE LAS TARJETAS DE EXPANSIÓN	40
4.7.1 - 8 ENTRADAS Y 8 SALIDAS DIGITALES	42
4.7.1.1. Configuración de alarmas	43
4.7.1.2. Configuración de salidas digitales estáticas	45
4.7.1.3. Configuración de entradas digitales	46
4.7.1.4. Conexionado entradas / salidas	47
4.7.1.5. Visualización de parámetros de la tarjeta 8E / 8S digitales	48
4.7.1.6. Características tarjeta 8E / 8S.	48
4.7.2 - 8 ENTRADAS DIGITALES Y 4 SALIDAS RELÉ	49

4.7.2.1. Configuración de alarmas	50
4.7.2.2. Configuración de salidas relé	52
4.7.2.3. Configuración de entradas digitales	53
4.7.2.4. Conexionado de entradas / salidas	54
4.7.1.5. Visualización de parámetros de la tarjeta	55
4.7.2.6. Características	55
4.7.3 - 8 ENTRADAS ANALÓGICAS Y 4 SALIDAS ANALÓGICAS	56
4.7.3.1. Configuración de salidas analógicas	57
4.7.3.2. Configuración alarmas en función de las entradas analógicas	58
4.7.3.3. Configuración de entradas analógicas	59
4.7.3.4. Visualización de parámetros de la tarjeta	61
4.7.3.5. Características	61
4.7.4 - ETHERNET Y MEMORIA SD	62
4.7.4.1. Protocolo de red y comunicaciones.	63
4.7.4.2. Configuración de la dirección IP	64
4.7.4.3. Configuración de la tarjeta SD	66
4.7.4.4. Visualización de parámetros de la tarjeta SD	66
4.7.4.5. Iconos de tarjeta de expansión	67
4.7.4.6. Características de la conexión ethernet	67
4.7.5 - TARJETA DE EXPANSIÓN DE MEMORIA SD	68
4.7.5.1. Configuración de la tarjeta SD	68
4.7.5.2. Visualización de parámetros de la tarjeta SD	69
4.7.5.3. Iconos de tarjeta de expansión	70
4.7.5.4. Características de la tarjeta SD	70
4.7.6 - TARJETA 4 SALIDAS ± 5MA Y 4 SALIDAS ESTÁTICAS	71
4.7.6.1. Configuración de la tarjeta de salidas analógicas ± 5mA	71
4.7.6.2. Configuración de las salidas analógicas ± 5mA	72
4.7.6.3. Configuración de las alarmas	73
4.7.6.4. Configuración de salidas transistor	74
4.7.6.5. Conexionado salidas.	74
4.7.6.6. Características de la tarjeta	75
4.7.7 - TARJETA COMUNICACIONES PROFIBUS	

4.7.7.1. Configuración de la tarjeta Profibus	
4.7.7.2. Visualización de parámetros de la tarjeta Pro	ofibus76
4.7.7.3. Configuración de las comunicaciones	
4.7.7.4. Leds indicativos de la tarjeta Profibus	
4.7.7.5. Conector Profibus DP (DB-9)	
4.7.7.6. Modulos GSD Profibus	
5. OTRAS CONFIGURACIONES DEL SISTEMA	
5.1. PREFERENCIAS	
5.1.1 PANTALLA	
5.1.2 RELOJ / TEMPERATURA	
5.1.3 SEGURIDAD	
5.2. ÚTILES	
5.2.1 EQUIPO	
5.3. MÓDULOS	
5.3.1 LISTA	
5.3.2 SETUP	
6. PANTALLAS DE VISUALIZACIÓN	
6.1. MEDIDA	
6.1.1 PRINCIPAL	
6.1.1.1. Información del sistema	
6.1.1.2. Máximos	
6.1.1.3. Mínimos	
6.1.2 TENSIÓN FASE-NEUTRO	
6.1.2.1 Visualización de la forma de onda de tensiór	۱93
6.1.2.2 Visualización de fasores de tensión	
6.1.3 TENSIÓN ENTRE FASES	
6.1.4 CORRIENTE	
6.1.4.1 Visualización de la forma de onda de corrien	te 97
6.1.4.2 Visualización de fasores de corriente	
6.1.5 POTENCIAS	
6.1.5.1 Potencia Activa	
6.1.5.2 Potencia Inductiva	

6.1.5.3 Potencia Capacitiva	100
6.1.5.4 Potencia Aparente	101
6.1.5.5 Potencia Total	102
6.1.6 FACTOR DE POTENCIA	103
6.1.7 COS ϕ	103
6.2. DEMANDA	105
6.3. ENERGÍA	106
6.3.1 ENERGÍA ACTUAL	106
6.3.2 ENERGÍA MENSUAL	107
6.3.3 ENERGÍA ANUAL	107
6.4. TARJETAS DE EXPANSIÓN	108
6.4.1 TARJETA 8 ENTRADAS / 8 SALIDAS DIGITALES	108
6.4.2 TARJETA 8 ENTRADAS / 4 SALIDAS RELÉ	109
6.4.3 TARJETA 8 ENTRADAS / 4 SALIDAS ANALÓGICAS	109
6.4.4 TARJETA SD-ETHERNET Y MEMORIA SD	110
6.4.5 TARJETA MEMORIA SD	110
6.4.6 TARJETA 4 SALIDAS ±5 MA Y 4 SALIDAS ESTÁTICAS	111
6.4.7 TARJETA COMUNICACIONES PROFIBUS	111
7. CALIDAD	
7.1. ARMÓNICOS	112
7.1.1 THD EN TENSIÓN	113
7.1.2 THD EN CORRIENTE	114
7.1.3 ARMÓNICOS DE TENSIÓN	115
7.1.4 ARMÓNICOS DE CORRIENTE	117
7.2. PERTURBACIONES	119
7.2.1 FLICKER	119
7.2.1.1 Calculo PST	120
7.2.1.2 Calculo de la media ponderada instantánea	120
7.2.2 FACTOR K	121
7.2.3 DESEQUILIBRIO Y ASIMETRÍA	122
7.2.4 FACTOR DE CRESTA	123
8. COMUNICACIONES	

CIRCUTOR

8.1. PROTOCOLO MODBUS/RTU ®124
8.2. ESQUEMAS DE CONEXIONADO125
8.2.1 CONVERSOR INTELIGENTE 125
8.2.2 CONVERSOR TCP2RS 126
8.2.3 CONVERSOR USB 127
8.2.4 BUS DE COMUNICACIONES PANTALLA-MÓDULOS 128
8.3. MAPA DE MEMORIA MODBUS/RTU ®129
8.3.1 VARIABLES ELÉCTRICAS 129
8.3.2. VARIABLES DE ENERGÍA ACTUAL
8.3.3. VARIABLES DE ENERGÍA MES ANTERIOR 134
8.3.4. VARIABLES DE ENERGÍA AÑO ANTERIOR 136
8.3.5. VARIABLES DE MÁXIMA DEMANDA138
8.3.6. VARIABLES DE ARMÓNICOS DE TENSIÓN140
8.3.7. VARIABLES DE ARMÓNICOS DE CORRIENTE141
8.3.8. VARIABLES TARJETAS DE EXPANSIÓN ENTRADAS DIGITALES 142
8.3.9. VARIABLES TARJETAS DE EXPANSIÓN ENTRADAS ANALÓGICAS
8.4. CARACTERISTICAS RED RS-485144
9. MANTENIMIENTO
9.1 MANTENIMIENTO DEL EQUIPO144
10. CARACTERÍSTICAS
10.1 NORMATIVAS145
10.2 CARACTERÍSTICAS TÉCNICAS145
10.3 OTROS CONCEPTOS147
10.3.1 COEFICIENTE DE DESEQUILIBRIO (KD)147
10.3.2 COEFICIENTE DE ASIMETRÍA (KA) 147
10.3.3 FLICKER
10.3.4. FACTOR K
10.3.5. FACTOR DE CRESTA 149
11. SOFTWARE
11.1 POWER STUDIO SCADA150

<u>1. INTRODUCCIÓN</u>

Este manual pretende ser una guía en la instalación, configuración y manejo del analizador de redes modelo **CVMk2**, para obtener las mejores prestaciones del mismo. Léalo con atención y respete las indicaciones y las normas de seguridad.

1.1 DESCRIPCIÓN

CVMk2 mide, calcula y muestra los principales parámetros eléctricos de redes industriales trifásicas equilibradas o desequilibradas.

La medida se realiza en verdadero valor eficaz (TRMS), mediante tres entradas de tensión alterna, dos referencias de tensión (neutro y tierra), y cuatro entradas de corriente, para la medida de secundarios .../1A ó .../5A, procedentes de los transformadores de corriente exteriores.

El analizador de redes y calidad de suministro **CVMk2** es un instrumento de medida programable. Ofrece una serie de posibilidades de empleo, las cuales se pueden seleccionar mediante menús de configuración en el propio instrumento. Antes de poner en marcha el analizador, lea detenidamente los apartados de: alimentación, conexión y configuración, y elija la forma de operación más adecuada para obtener los datos deseados.

CVMk2 permite la visualización de los parámetros eléctricos, mediante pantalla gráfica 1/4 VGA retroiluminada. Muestra los parámetros eléctricos instantáneos y máximos o mínimos indicando la fecha y la hora de los mismos, pulsando la tecla correspondiente.

Mediante un procesador interno, **CVMk2** muestra por pantalla y por comunicación más de 500 parámetros eléctricos, los cuales pueden ser de un sistema monofásico o trifásico.

CVMk2 posee las siguientes características relevantes:

- Dimensiones externas 144 x 144 x 116 mm.
- Montaje en carril DIN 46277 (EN 50022) (módulo de medida) y pantalla en panel (96x96 mm, 144x144 mm ó agujero de diámetro 103 mm.
- Medición en verdadero valor eficaz (TRMS).
- Clase 0,2 ó 0,5 en Potencia y Energía (Según modelo)
- Valores instantáneos, máximos y mínimos con fecha y hora.
- Pantalla gráfica 1/4 VGA retroiluminada.
- Comunicación RS-485 (Modbus/RTU©).
- Posibilidad de configurar la pantalla como MASTER de 32 módulos de medida.
- Equipo multitarifa (programables hasta 9 tarifas).
- Memoria para energía consumida y generada actual, mensual y anual (total y por tarifa).
- Representación gráfica de formas de onda y fasores de tensión y corriente.
- Contador de energía consumida y generada de 8 dígitos (100 GW·h)
- Grabación de eventos de calidad de suministro en tensión.
- Ampliable mediante tarjeta de expansión de entradas / salidas, memoria y comunicaciones.
- Implementado en el software de gestión energética de CIRCUTOR, Power Studio Scada. http://powerstudio.circutor.com

CVMk2 no dispone de batería. en caso de cortes en la alimentación, el analizador no registra los eventos de calidad, por eso es importante asegurar la alimentación del dispositivo de una fuente ininterrumpida. (batería, sai, ...)

1.2 MODELOS DISPONIBLES

CÓDIGO	TPO	VÁLIDO PARA TRANSFORMADORES/5 Y/1 A	TRIFÁSICO 5060HZ	VERDADERO VALOR EFICAZ (TRMS)	ENTRADAS DE CORRIENTE AISLADAS ITF	PUERTOS DE COMUNICACIÓN (*)	SLOTS DE EXPANSIÓN	ANÁLISIS DE ARMÓNICOS (50°) V Y C	DETECCIÓN DE PERTURBACIONES	EQUIPO MULTITARIFA (9 TARIFAS)	4 CUADRANTES	FORMAS DE ONDA DE TENSIÓN Y CORRIENTE	CLASE 0,5 (POTENCIA Y ENERGÍA)	CLASE 0,2 (POTENCIA Y ENERGÍA)	PROTOCOLO DE RED	PROTOCOLO COMUNICACIÓN
M54400	CVM <i>k</i> 2-ITF-405	•	•	•	•	2	3	•	•	•	•	•	•		RS485	Modbus/RTU
M54402	CVM <i>k</i> 2-ITF-402	•	•	•	•	2	3	•	•	•	•	•		•	RS485	Modbus/RTU

Modulos de medida (sin pantalla)

M54410	M-CVM <i>k</i> 2-ITF-405	•	•	•	•	2	3	•	•	•	•	•	•		RS485	Modbus/RTU
M54412	M-CVM <i>k</i> 2-ITF-402	•	•	•	•	2	3	•	•	•	•	•		•	RS485	Modbus/RTU

(*) COM1 para comunicar únicamente con la pantalla y COM2 bus RS-485 Modbus/RTU

Para asegurar la clase de la medida se aconseja la utilización de transformadores de alta precisión modelo TCH. Ver familia M7 transformadores de corriente.

12

1.3 TARJETAS DE EXPANSIÓN

CVMk2 dispone de una amplia gama de tarjetas de expansión que posibilitan al usuario interactuar en el sistema o comunicar el equipo mediante otros protocolos o medios. Las tajetas y sus códigos correspondientes se encuentran en la siguiente tabla.

CÓDIGO	I/O	DESCRIPCIÓN					
ME4504	91/90	8 entradas digitales libres de potencial					
10134301	01/00	8 salidas digitales por transistor optoacoplado					
M54502	91/40	8 entradas analógicas (0/420 mA)					
19134302	01/40	4 salidas analógicas (0/420 mA)					
ME4502	91/40	8 entradas digitales libres de potencial					
19134303	01/40	4 salidas relé (3 NA + 1 NA/NC)					
M54504	M54504 Ethernet (Modbus/TCP) + Memoria SD						
M54506	Memoria SD						
ME4607	40/40	4 salidas analogicas de ± 5mA					
IVI343U <i>1</i>	40/40	4 salidas digitales por transistor optoaislado					
M5450A	Profibus DP						

1.4 CODIFICACIÓN DE OTROS PARÁMETROS

Para codificar atributos o características especiales de medida o alimentación de los equipos o en los módulos de medida, debe utilizar la siguiente tabla de codificación.

М	5	4	X	X	X	0	0	X	X	X
		Cóc	ligo	Cóc inte	digo erno					
T alim	ensión nentac	n ción		85 . 100 .	0					
	(TA)			SDC 2	2490) V c.c	-	8		
			Est	andar	300 /	520 V	c.a.		0	
Tensi	ión me (TM)	edida		63,5 /	110 V	c.a. (*	[*])		1	
				500 /		3				
En C	trada orrien	de te	IT	F exte			3			

(*) La medida en tensión 110 Vac y/o la medida de corriente mediante transformadores exteriores WG20 para medir en secundario de transformador principal, únicamente es posible solicitarlo en el módulo de medida modelo 402 de código M54412. Si se solicita éste módulo especial debe saber que la pantalla de visualización NO está incluida y debe solicitarse aparte. (ver apartado 1.6 ACCESORIOS)

1.5 PARÁMETROS DE ANÁLISIS

PARAMETRO	UNIDAD	L1	L2	L3	Ν	III
TENSIÓN SIMPLE	V	•	•	•	•	•
TENSIÓN COMPUESTA	V	•	•	•		•
CORRIENTE	A	•	•	•	•	•
FRECUENCIA	Hz	•				
POTENCIA ACTIVA (Consumo y Generación)	kW	•	•	•		•
POTENCIA INDUCTIVA (Consumo y Generación)	kvar L	•	•	•		•
POTENCIA CAPACITIVA (Consumo y Generación)	kvar C	•	•	•		•
POTENCIA APARENTE (Consumo y Generación)	kVA	•	•	•		•
FACTOR DE POTENCIA	PF	•	•	•		•
COS φ	Cos φ	•	•	•		•
MÁXIMA DEMANDA POTENCIA ACTIVA	Pd					•
MÁXIMA DEMANDA POTENCIA APARENTE	Pd					•
MÁXIMA DEMANDA CORRIENTE	Pd	•	•	•		•
THD de TENSIÓN (RMS Y FUNDAMENTAL)	THD V	•	•	•	•	
THD de CORRIENTE (RMS Y FUNDAMENTAL)	THD A	•	•	•	•	
ARMÓNICOS TENSIÓN 2º50º	arm V	•	•	•	•	
ARMÓNICOS CORRIENTE 2º50º	arm A	•	•	•	•	
ENERGÍA ACTIVA (Consumo y Generación)	kW∙h					•
ENERGÍA INDUCTIVA (Consumo y Generación)	kvarL∙h					•
ENERGÍA CAPACITIVA (Consumo y Generación)	kvarC∙h					•
ENERGÍA APARENTE (Consumo y Generación)	kVA·h					•
ENERGÍA ACTIVA de TARIFAS (Cons. y Gener)	kW∙h					•
ENERGÍA INDUCTIVA de TARIFAS (Cons. y Gener)	kvarL∙h					•
ENERGÍA CAPACITIVA de TARIFAS (Cons. y Gener)	kvarC∙h					•
ENERGÍA APARENTE de TARIFAS (Cons. y Gener)	kVA·h					•
FLICKER (WA Y PST)	Wa / Pst	•	•	•		
FACTOR K (corriente)		•	•	•		
FACTOR DE CRESTA (tensión)		•	•	•		
DESEQUILIBRIO (tensión y corriente)		•	•	•		
ASIMETRÍA (tensión y corriente)		•	•	•		
PARAMETROS EN PANTALLA						
DESFASE ENTRE TENSIONES						
DESFASE ENTRE CORRIENTES						
DESFASE ENTRE TENSIONES Y CORRIENTES						
FORMAS DE ONDA (tensión y corriente)		•	•	•		
FASORES		•	•	•		

1.6 ACCESORIOS

CODIGO	DESCRIPCIÓN
M5ZZH1	Conjunto de regletas de conexión y alimentación CVMk2
M54420	Pantalla de visualización de CVMk2

2. INSTALACIÓN

El presente manual contiene información y advertencias, que el usuario debe respetar para garantizar un funcionamiento seguro del equipo, para mantenerlo en buen estado y en todo lo que respecta a su seguridad.

Si se manipula el equipo de forma no especificada por el fabricante, la protección del equipo puede resultar comprometida

2.1 COMPROBACIONES A LA RECEPCIÓN

A la recepción del instrumento compruebe los siguientes puntos:

- El equipo corresponde a las especificaciones de su pedido.
- Compruebe que el equipo no ha sufrido desperfectos durante el transporte.
- · Compruebe que está equipado con la guía rápida y / o manuales adecuados.

Para la utilización segura del **CVMk2** es fundamental que las personas que lo instalen o manipulen sigan las medidas de seguridad habituales, así como las distintas advertencias indicadas en el Manual de Instrucciones.

La instalación y mantenimiento de este analizador debe ser efectuado por personal cualificado.

2.2 LUGAR DE MONTAJE

CONDICIONES AMBIENTALES

Para garantizar un funcionamiento óptimo, se recomienda utilizar este equipo entre -10 y 40 °C con una humedad relativa comprendida entre el 5 y el 95% sin condensación. Margen de temperatura indicado según certificación **UL**. En pruebas internas de laboratorio -10...50 °C

CONSIDERACIONES

CVMk2 debe ser montado en un armario de distribución que proteja al equipo de los contaminantes ambientales, tales como el aceite, la humedad, el polvo y los vapores corrosivos u otras sustancias volátiles.

Cuando sea probable que el equipo haya perdido la protección de seguridad (al presentar daños visibles), debe ser desconectado de la alimentación auxiliar y de la medida. En este caso, póngase en contacto con un representante de servicio técnico cualificado.

La instalación del equipo se puede realizar de dos formas básicamente:

- Como equipo compacto en armario de distribución, instalado en panel.
- Como equipo modular, instalando la pantalla en panel y el módulo de medida instalado en carril DIN 46277 (EN 50022).

2.3 MÉTODOS DE INSTALACIÓN

Las figuras muestran las diferentes posibilidades de instalación que permite el diseño de la pantalla. El diseño del equipo permite la instalación en panel en taladros de (92 ^{+0,8} + 92 ^{+0,8} mm, 138 ^{+0,8} + 138 ^{+0,8} mm y redondos de 103 mm de diámetro.

Las figuras muestran como se instala la parte frontal (pantalla), en un agujero de 92 x 92 mm, diámetro 103 mm y de 138 x 138 mm.

Después de insertar el frontal, colocar el aro de fijación, asegurándose de que las pestañas están desbloqueadas (ver procedimiento) y de que la flecha blanca que nos indica la salida del cable de comunicaciones y alimentación de la pantalla RJ-45, coincide con la flecha del equipo de medida.

2.3.1 PROCEDIMIENTO

Las pestañas son los elementos de fijación del equipo al panel. Es importante a la hora de fijar el equipo que las pestañas estén libres, desbloqueadas, de forma que a medida que se presiona el aro, vayan saltando los dientes de la cremallera de fijación. Del mismo modo, para desmontar el visualizador del panel, las pestañas deben bloquearse, es decir, abrirse, antes de proceder al desmontaje.

En la figura se muestra una ampliación de la imagen anterior. Se muestra con detalle el movimiento de bloqueo y desbloqueo de las pestañas del aro de fijación de la pantalla del **CVMk2**.

La flecha debe señalar hacia arriba, como indica la figura y debe coincidir con la flecha que se encuentra en la parte trasera del visualizador o pantalla. La flecha indica la salida de la manguera RJ-45 de comunicaciones y alimentación de la pantalla.

El esquema de montaje se muestra en la siguiente figura. La unidad de medida puede montarse a continuación del aro, detrás de la pantalla o se puede instalar también en carril DIN comunicando con la pantalla a través de un cable de comunicación y alimentación transparente RJ-45. (ver tabla 3.1 descripción física).

Para la instalación de la pantalla en panel como describe el apartado 2.3, debe utilizarse una superficie plana en una envolvente de tipo 1.

2.4 CONEXIÓN DEL EQUIPO

Antes de la conexión del equipo debe verificar los siguientes puntos:

- 2.4.1 Características de alimentación auxiliar.
- 2.4.2 Tensión máxima en el circuito de medida de tensión.
- 2.4.3 Corriente máxima en el circuito de medida de corriente.
- 2.4.4 Condiciones de trabajo.
- 2.4.5 Seguridad.

2.4.1 ALIMENTACIÓN AUXILIAR

Alimentación tipo estándar	85265 100300	V c.a. V c.c
Frecuencia	5060	Hz
Alimentación opcional	2490	V c.c

2.4.2 TENSIÓN NOMINAL EN CIRCUITO DE MEDIDA DE TENSIÓN

Tensión nominal estándar (*)	300 / 520	V_{f-N} / V_{f-f}
Otras tensiones (*)	500 / 866	V_{f-N} / V_{f-f}
(*) limitadas en corriente . Máximo 0.6 V·A	63,5 / 110	V _{f-N} / V _{f-f}
Frecuencia nominal	45,0065,00	Hz

 $Vmax = U_{N} \times 1,2$

2.4.3 CORRIENTE NOMINAL EN CIRCUITO DE MEDIDA DE CORRIENTE

Secundarios/5A (*)	5	A c.a.
Secundarios/1A (*)	1	A c.a.
(*) Limitadas en tensión		

 $Imax = I_{N} \times 1,2$

2.4.4 CONDICIONES DE TRABAJO

Temperatura de uso	-10+40	°C
Humedad relativa	595	%

2.4.5 SEGURIDAD

Diseñado para instalaciones CAT III 300 / 520 Vac según EN-61010 Protección frente choque eléctrico por doble aislamiento clase II Diseñado e identificado con distintivo CE

Antes de manipular el equipo, para ampliar con tarjetas de expansión, modificar conexionado o sustituir el equipo, debe quitar la alimentación y la medida del CVMk2. Manipular el equipo mientras está alimentado es peligroso para las personas.

2.4.6 CARACTERÍSTICAS TÉCNICAS

ENTRADAS DE TENSIÓN			
Margan da madida	del 5 al 120% de <i>U</i> n para <i>U</i> n = 300 V ac (f-N)		
	del 5 al 120% de <i>U</i> n para <i>U</i> n = 520 V ac (f-f)		
Frecuencia	4565 Hz		
Tensión máxima medida	360 V c.a.		
Sobretensión admisible	750 V c.a.		
Consumo máximo (corriente limitada)	< 0,6 V•A		
ENTRADAS DE CORRIENTE			
Margen de medida	del 1 al 120% de <i>I</i> n para <i>I</i> n = 5 A		
Segundario de los TC (In)	1 ó 5 A		
Corriente primaria medida	Programable < 30.000 A		
Sobrecarga admisible	6 A permanente, 100 A t<1 s		
Consumo	< 0,45 V•A		
ALIMENTACIÓN AUXILIAR			
Alimontosión	85 a 265 V c.a. (5060Hz) (consumo < 30 VA)		
	100 a 300 V c.c. (consumo < 25 W)		
CONEXIONADO			
Sección en conductor rígido	4.5 mm ² (AWG 11)		
Par de apriete del borne	0.8 Nm		

Con el equipo conectado, los bornes pueden ser peligrosos al tacto, y la apertura de cubiertas o eliminación de elementos protectores puede dar acceso a partes peligrosas. El equipo no debe ser alimentado hasta que haya finalizado por completo su instalación.

2.5 DESCRIPCIÓN BORNES

2.5.1 ETIQUETA DE CONEXION DE TENSIONES Y TI

BORNE	DESCRIPCIÓN
1	Conexión S1 de transformador de corriente de la fase L1
2	Conexión S2 de transformador de corriente de la fase L1
3	Conexión S1 de transformador de corriente de la fase L2
4	Conexión S2 de transformador de corriente de la fase L2
5	Conexión S1 de transformador de corriente de la fase L3
6	Conexión S2 de transformador de corriente de la fase L3
7	Conexión S1 de transformador de corriente de Neutro
8	Conexión S2 de transformador de corriente de Neutro
9	Entrada tensión de la fase L1
10	Entrada tensión de la fase L2
11	Entrada tensión de la fase L3
12	Entrada tensión V _{REF} (GND)
13	Entrada tensión NEUTRO

2.5.2 ETIQUETA DE ALIMENTACIÓN Y COMUNICACIONES

El equipo debe conectarse a un circuito de alimentación protegido con fusibles tipo gl según IEC 269 o tipo M, de valores comprendidos entre 0.5 y 1 A / 600 V (UL listed). Debe estar provisto de un interruptor magneto térmico o dispositivo equivalente, para poder desconectar el equipo de la red de alimentación. El circuito de alimentación y de medida de tensión se conecta con cable de sección mínima 1 mm². (AWG 17). La línea de conexión del secundario del transformador de corriente debe tener una sección mínima de 2 mm². (AWG 14 Cu) y soportar un mínimo de 60 °C.

2.6 ESQUEMAS DE CONEXIONADO DE MEDIDA

2.6.1 - 4 TI Y 5 REFERENCIAS DE TENSIÓN

2.6.2 - 4 TI Y 4 REFERENCIAS DE TENSIÓN

2.6.3 - 3 TI Y 4 REFERENCIAS DE TENSIÓN

2.6.4 - 3 TI Y 3 REFERENCIAS DE TENSIÓN

22

2.6.5 - 4 TI Y 2 TRANSFORMADORES DE TENSIÓN

2.6.6 - 3 TI Y 2 TRANSFORMADORES DE TENSIÓN

2.6.7 - 2 TI Y 2 TRANSFORMADORES DE TENSIÓN

2.7 CONEXIONADO DE ALIMENTACIÓN

El equipo debe conectarse a un circuito de alimentación protegido con fusibles tipo gl según IEC 269 o tipo M, de valores comprendidos entre 0.5 y 1 A / 600 V (UL listed). Debe estar provisto de un interruptor magneto térmico o dispositivo equivalente, para poder desconectar el equipo de la red de alimentación. El circuito de alimentación y de medida de tensión se conecta con cable de sección mínima 1 mm². (AWG 17). La línea de conexión del secundario del transformador de corriente debe tener una sección mínima de 2 mm². (AWG 14) y soportar un mínimo de 60 °C.

3. FUNCIONAMIENTO

3.1 DESCRIPCIÓN FÍSICA

El analizador de redes **CVMk2** tiene unas dimensiones exteriores de 144 x 144 x 116 mm. Se compone de una pantalla y un módulo de medida. La pantalla se comunica con el módulo de medida mediante una manguera RJ-45 mediante la cual también llega la alimentación de la misma de 24 Vcc. La manguera es "transparente" o directa estándar ethernet y su esquema es como muestra la figura.

PAN	PANTALLA		EQUIPO MEDIDA		
PIN	SEÑAL	SEÑAL	PIN		
1	V+	V+	1		
2	GND	GND	2		
3	В (-)	В (-)	3		
4	Shield	Shield	4		
5	Shield	Shield	5		
6	A (+)	A (+)	6		
7	GND	GND	7		
8	V -	V -	8		

3.1.1 FRONTAL

TECLAS FUNCIÓN

El frontal se divide en varias partes:

- a) Pantalla.
- b) Teclas de función.
- c) Teclas de desplazamiento.
- d) Tecla SET
- e) Menús superiores e inferiores.
- f) Nombre del módulo.
- g) Iconos.

3.1.1.a. Pantalla

El analizador de redes **CVMk2**, incorpora una pantalla LCD de 1/4 de VGA (QVGA) de 320 x 240 píxeles retroiluminada. La pantalla tiene retroiluminación para permitir la lectura de los parámetros mostrados por pantalla en condiciones de poca luminosidad.

CVMk2 permite la programación de un temporizador para apagar la retroiluminación pasados unos segundos. Permite seleccionar entre los valores 10, 90 ó 180 segundos. También es posible dejar la retroiluminación encendida permanentemente o siempre apagada.

Para acceder al menú de configuración de las propiedades de la pantalla, debe desplazarnos con la tecla de desplazamiento izquierda hasta *ITENU*. Con la tecla *SET* o la flecha inferior, se abre el menú desplegable. Seleccionar *SISTEMR--PREFERENCIRS--PRINTRLLR*.

La temperatura máxima de trabajo de la pantalla 1/4 VGA es de 50°C. Un funcionamiento por encima de esta temperatura puede provocar un rápido deterioro o un mal funcionamiento permanente.

3.1.1.b. Teclas de función

En la parte frontal, el equipo incorpora 4 teclas de función (F1, F2, F3 y F4). Las teclas de función sirven para acceder a los diferentes menús que nos aparecen en la parte inferior de la pantalla.

3.1.1.c. Teclas de desplazamiento

En la parte frontal, el equipo incorpora 4 flechas que sirven para desplazarnos por los diferentes menús que nos aparecen en la parte superior de la pantalla. Para salir del menú en que se encuentra, debe pulsar la flecha izquierda.

3.1.1.d. Tecla SET.

Esta tecla sirve para entrar en el menú seleccionado con el cursor y para confirmar cualquier cambio en los parámetros de configuración del CVMk2 antes de pulsar la tecla *DK*.

3.1.1.e. Menús superiores e inferiores

Los menús superiores e inferiores van cambiando en función de la pantalla en la que se encuentre. Veremos detenidamente todos los menús y lo que hay dentro de cada uno de ellos con más detalle en los siguientes capítulos.

3.1.1.f. Nombre del módulo

En esta parte de la pantalla se muestra el módulo de medida que esta visualizando. Importante en instalaciones donde se dispone de módulos de medida comunicados con sólo una pantalla.

3.1.1.e. Iconos

- Menú de configuración editable (sin contraseña).
- Menú de configuración bloqueado con contraseña.
- 🕐 No está conectada ninguna de las tensiones de las fases o no se detectan.
- 🕒 Sólo se detecta tensión en entrada de la fase 1.
- Sólo se detecta tensión en entrada de la fase 2.
- Sólo se detecta tensión en entrada de la fase 3.
- Sólo se detecta tensión en las entradas de las fases 1 y 2.
- Sólo se detecta tensión en las entradas de las fases 1 y 3.
- Sólo se detecta tensión en las entradas de las fases 2 y 3.
- Se detectan tensiones en las entradas de las fases 1, 2 y 3.
- Estado de la memoria SD correcto.
- Estado de la memoria SD incorrecto.
- Extracción segura de tarjeta SD habilitada.
- **U** Detección de un evento de corte o hueco. Sólo aparece mientras dura el evento.
- Π Detección de un evento de sobretensión. Sólo aparece mientras dura el evento.
- Detección de un evento de interrupción. Sólo aparece mientras dura el evento.
- No existe consumo ni generación.
- 🛃 Generación.
- 🖬 Consumo.

3.2. PUESTA EN MARCHA

Antes de alimentar el equipo, debe asegurarse de que todos los cables están conectados correctamente. Un mal conexionado puede producir lesiones importantes a las personas que manipulen el equipo y al propio equipo.

Cuando se aplica alimentación al **CVMk2**, el equipo muestra una presentación e inicializa su software interno indicando por pantalla la versión del firmware y tras un periodo de búsqueda, muestra también las versiones de firmware de los modulos que están conectados en el puerto COM 1 DISPLAY, así como las tarjetas insertadas en cada uno de los módulos.

Si durante la puesta en marcha o funcionamiento del **CVMk2** sucede alguna anomalía o error, contacte con el servicio técnico de **CIRCUTOR**, **SA**.

Al terminar la inicialización el **CVMk2** muestra los valores instantáneos del módulo seccionado, en la pantalla principal.

La pantalla de inicio del **CVMk2** se puede variar, ya que el equipo memoriza la última pantalla que se ha estado visualizando durante más de 20 segundos antes de ser desconectado y ésta pantalla es la que aparecerá cuando acceda a visualizar valores nuevamente, excepto con pantallas de tarjetas de expansión que no se memorizan.

Una vez el **CVMk2** se ha instalado y alimetado, se recomienda reiniciar los contadores de energía y los valores máximos y mínimos del equipo . Es posible que en el proceso de instalación se produzcan registros reales pero fuera de los márgenes de trabajo normal del equipo y afecten posteriormente a la visualización de los registros en gráficas o tablas.

4. CONFIGURACIÓN

El analizador no guarda los cambios de realizados hasta finalizar la programación y confirmarlos pulsando la tecla *SET* y posteriormente *DK*. Si se realiza un *RESET* antes de la conclusión de dicha programación o se sale del menú con la tecla *ESE*, la configuración realizada no queda almacenada en memoria. Para acceder al menu de configuración, ver capítulo 4 del manual.

Se puede afirmar que éste es el menú más importante del analizador. Desde este menú se permite configurar las variables, características de registro de las variables eléctricas, configurar las comunicaciones y todos los parámetros de las tarjetas de expansión (en caso de haberlas).

Para acceder a la configuración, dentro de *MENU*, seleccionar *CONFIG* y confirmar con la tecla *SET*.

El menú de la parte superior se muestra como indica la figura.

4.1 MEDIDA

Dentro del menú de *I*TEDIDR se accede a la relación de los transformadores de tensión y de corriente. Para modificar los parámetros de la configuración de los transformadores, debe pulsar la tecla *EDIT* (F4).

El cursor se coloca en la primera línea de parámetros (en este caso, primario de tensión). Con las flechas arriba-abajo, mueve el cursor hasta el parámetro deseado. Pulsar *5ET* para entrar en el valor numérico que desea modificar. El cursor se coloca en el primer dígito de mayor valor. Con las flechas izquierda / derecha cambia de dígito y con las flechas arriba / abajo, incrementa o decrementa el valor del dígito.

Una vez introducido el valor deseado en el campo se debe confirmar ese valor mediante la tecla SET y posteriormente con la tecla DK

Menu	Medida	Com.	Tar jetas
Medida	Rel.Trans		000004
Prim	I. U		000001
Sec.	U		001
Prim	1. I		01000
Prim	ı. In		01000
Sec.	I		5
		ESC	∞ ฃ๏⊗ն

Los parámetros que se pueden configurar en esta pantalla son:

- *PRIN. U.*: Primario de los tranformadores de tensión. En caso de no existir, debe programarse *1*. El valor máximo configurable es *999999.*
- *SEC. U*.: Secundario de los tranformadores de tensión. En caso de no existir, debe programarse *1*. El valor máximo configurable es de 3 dígitos *999*.
- PRIA. I.: Primario del tranformador de corriente. El valor máximo configurable es 30000.
- PRIN. In: Primario del tranformador de corriente del neutro. El valor máximo configurable es 30000.
 El valor por defecto es 5. Si desea que el CVMk2 muestre la corriente de neutro calculada, debe configurar 0.
- 5EC. I.: Secundario del tranformador de corriente. Puede programarse 5 ó 1.

Para grabar los parámetros modificados, debe pulsar la tecla 5ET y posteriormente DK (F4) antes de salir. En caso de no desear grabar los cambios, pulsar ESE (F3).

ADVERTENCIA: La visualización de la potencia del CVMk2 está limitada según la fórmula:

(Prim V) x (Prim I) < 45.000.000

4.2 CALIDAD

CVMk2 no dispone de batería. en caso de cortes en la alimentación, el analizador no graba los eventos de calidad, por eso es importante asegurar la alimentación del dispositivo de una fuente ininterrumpida. (batería, sai, ...)

Para acceder a la pantalla de configuración de los parámetros de calidad de suministro, debe situar el cursor sobre *CRLIDRD* y pulsar *SET.* Se muestran dos opciones dentro del menú de calidad, *CRLIDRD* y *EVENTDS* que se explican a continuación.

4.2.1. CALIDAD

Para acceder al menú de configuración de los parámetros de calidad, debe ir al menu *CRLIDRD*, dentro del menú principal y selccionar *CRLIDRD*. De las dos opciones que se muestran, seleccionar *CRLIDRD*. En este apartado se configuran los valores nominales de la instalación para tener los parámetros de comparación y detectar eventos de sobre tensiones o caídas de tensión.

🔳 CIRCUTOR

Los parámetros que se configuran en esta pantalla son:

- *THD CRLC*: Si desea realizar el cálculo de la tasa de distorsión armónica sobre la fundamental, seleccionar *FUND*. Si, por el contrario desea realizar el cálculo sobre el valor de RMS, seleccionar *RIIS*.
- PERIDDO: Introducir el periodo deseado para el registro de las variables. Debe ser entre 1 y 240 minutos. En caso de no disponer de tarjeta de memoria este periodo se aplica tanto para el cálculo de flicker com los registros STD. Si se tiene tarjeta de expansión de memoria externa SD, éste periodo es únicamente para el cálculo de flicker. El registro de los STD lo gestiona el Power Studio. Se entiende por periodo el tiempo de configuración (en minutos) de la ventana de integración.
- FREC. NOM: Introducir el valor de la frecuencia nominal de la red. Utilizado para el cálculo del flicker.
- V. NDIT: Introducir el valor de la tensión fase-neutro nominal de la red. En caso de utilizar un transformador de tensión, introducir el valor del secundario del transformador. En caso de no disponer de neutro, introducir el valor de tensión como si lo hubiera. Éste valor se utiliza como referencia para el cálculo de los eventos de calidad.

Para modificar los valores actuales, pulsar la tecla *EDIT* (F4). El cursor se coloca el la primera línea de parámetros. Con las flechas arriba / abajo, desplaza el cursor hasta el parámetro deseado. Pulsar *SET* para entrar en el valor numérico que le corresponde.

El cursor se coloca en el primer dígito, el de mayor valor. Con las flechas izquierda / derecha, se cambia de dígito y con las flechas arriba / abajo se incrementa o decrementa el valor del dígito donde se encuentra el cursor.

Para grabar los parámetros modificados, debe pulsar la tecla *SET* y posteriormente DK (F4) antes de salir. En caso de no desear grabar los cambios, pulsar *ESE* (F3).

Si se introducen valores fuera de margen o no válidos, las modificaciones no se quedan grabadas. Permanencen los valores anteriores a la modificación.

4.2.2. EVENTOS

Para acceder al menú de configuración de los márgenes de los eventos, debe ir al menu *ITEDIDR*, en el menú principal de configuración y seleccionar *EVENTOS* dentro del menú *CRLIDRD*.

Los parámetros que se configuran en esta pantalla són en % respecto a la V.NDI¹ del apartado anterior (*CALIDRD*).

Por lo tanto, el valor en % que debe configurar para el umbral de sobretensión debe ser siempre superior a un 100% (que corresponde al valor configurado en la variable \mathcal{V} /\Unitedia de la pantalla anterior (4.2.1 CALIDAD).

Menu Medida Com. Ta	arjetas
Medida Calidad » Eventos	
SobreV Um.	110.0
Huaca IIm	000 0
Hueco olin.	090.0
Corte Um.	010.0
Sobrev His	002.0
Hueco His	002.0
ndeco ma:	002.0
Corte His.	002.0
EDIT	U⊚⊗6

Para modificar los valores actuales, pulsar la tecla *EDIT* (F4). El cursor se coloca el la primera línea de parámetros. Con las flechas arriba/abajo, move el cursor hasta el parámetro deseado. Pulsar *SET* para entrar en el valor numérico que le corresponde.

El cursor se coloca en el primer dígito de mayor valor. Con las flechas izquierda/derecha, se cambia de dígito y con las flechas arriba/abajo, se incrementa o decrementa el valor del dígito donde está el cursor

Para grabar los parámetros modificados, debe pulsar la tecla SET y posteriormente DK (F4) antes de salir. En caso de no desear grabar los cambios, pulsar ESE (F3).

Los parámetros que se pueden configurar en esta pantalla son:

- SOBRE V Un: Corresponde al valor umbral en %, para detectar el evento de sobretensión.
- HUEED Un: Corresponde al valor umbral en %, para detectar el evento hueco.
- *CORTE Un*: Corresponde al valor umbral en %, para detectar del evento corte.
- SOBRE V His: Histéresis en %, sobre el valor programado en el umbral de detección.
- HUECO HIS: Histéresis en %, sobre el valor programado en el umbral de detección.
- CORTE His: Histéresis en %, sobre el valor programado en el umbral de detección.

El valor de la histéresis es siempre en la parte más restrictiva. No corresponde a una histéresis simétrica. El valor de detección es sobre el valor programado, en %. La histéresis se aplica en la parte de desconexión o desaparición del evento. Si el evento es de máximo (*SDBRE V Un*) la histéresis se aplicará cuando la señal disminuya. Si el evento es de mínimo (*HUECO Un* y *CDRTE Un*) la histéresis se aplicará cuando la señal vuelva a aumentar.

En la gráfica se muestra un evento de calidad de sobre tensión, que se encuentra acotado en el intervalo de tiempo t 0. La duración del evento de sobretensión es igual al tiempo que la señal se encuentra por encima del valor configurado para detectar sobretensiones (igual a 110 % de *Vnom*) más el tiempo que tarda la señal en descender del valor de histéresis (*Sobre V His*) programado normalmente en un 2%.

Otros eventos visibles en la gráfica están acotados en *t*1, *t*3 y *t*4. Estos eventos corresponden con unos huecos. El hueco general se configura a un 90% de *Vnom* y así se registra hasta que desciende por debajo de un 10% (en este caso se registra un corte, representado en la gráfica en el intervalo *t*2) o se repone nuevamente por encima del 90% configurado, más el 2% de histéresis (*Hueco His*).

Los eventos de calidad que registra el CVMk2 deben tener una duración mínima de 10 ms. Si el evento no dura este tiempo mínimo no queda registrado como tal, aunque si afecta al valor medio calculado de ese periodo.

Si se introducen valores fuera de margen o no válidos, las modificaciones no se quedan grabadas. Permanencen los valores anteriores a la modificación.

4.3 DEMANDA

Para acceder a la pantalla de configuración de los parámetros de control de máxima demanda, debe situar el cursor sobre *DEI*^T*IRNDR* y confirmar pulsando *SET* como muestra la figura.

Menu	Medida	Com.	Tar j	etas	
Medida Pr	Rel.Trans]			
V.media	Calidad » Demanda Tarifas	23	02.0) v	
P.total	Borrar	72	.905	5 k₩	
S.total	1	172	.905	5 kVA	
PF.media	a	0	.999	9	
Frec.		5	0.00) _{Hz}	
INFO	MAX	MIN			Մ⊡⊗ն

Para acceder a la pantalla de configuración de los parámetros de control de máxima demanda, debe situar el cursor sobre *DEMRNDR* y confirmar pulsando *SET*.

Menu Medida Com. Medida Demanda	Tarjetas
Periodo	15
Tipo vent.	DESLIZA

Los parámetros que se pueden configuran en esta pantalla son:

- *PERIDDD*: Minutos de la ventana de integración deseados para el cálculo de la máxima demanda. Los valores que se pueden programar van desde *1* hasta un máximo de *5D* minutos.
- *TIPD VENT*: Se puede seleccionar entre dos tipos de ventana para el cálculo de la máxima demanda. Éstos son:
- *FluR*: Cada tiempo de periodo se inicializa el valor de la máxima demanda. Si programa 15 minutos, cada 15 minutos se integran los valores medidos y se inicializan a cero los valores para los siguientes 15 minutos.
- DESLIZANTE: El inicio y final del periodo de integración se desplaza con cada muestra recogida. El cálculo de la máxima demanda se realiza con los valores incluidos en el tiempo de integración cada vez que se registra una nueva muestra.

Para grabar los parámetros modificados, debe pulsar la tecla *SET* y posteriormente $\mathcal{D}K$ (F4) antes de salir. En caso de no desear grabar los cambios, pulsar *ESE* (F3).

4.4 TARIFAS

ATENCIÓN: El CVMk2 queda configurado con la hora local y realiza la grabación de eventos con esa fecha y hora. Cuando el equipo se comunica con Power Studio, el software cambia la hora local por hora UTC

CVMk2 permite la configuración de hasta 9 tarifas. Para acceder a la pantalla de configuración de las tarifas, debe situar el cursor sobre *TRRIFR5* y pulsar *SET.*

Menu Medida Com. Medida Tarifas	Tar jetas
Núm.Tarifa	1
Sincro	EXTERNO
Núm. Entr.	0001
	EDIT UBOG

Los parámetros que se pueden configurar en esta pantalla son:

- *NÚI^{II}.TARIF.*: El número de tarifas, especifica cuantas tarifas distintas se desean configurar.
- SINERD.: Si se desea utilizar el reloj interno o calendario para gestionar la tarifas seleccionar opción *RELDJ*. Si se desea utilizar una señal externa para el cambio de tarifas (activando las entradas estáticas de una tarjeta de expansión del **CVMk2**), seleccionar la opción *EXTERND*.

Existe la posibilidad de cargar en memoria un calendario anual de tarifas. Este calendario sólo se puede grabar desde el software POWER STUDIO o POWER STUDIO SCADA de **CIRCUTOR, SA**. El calendario queda almacenado en la memoria y se reajusta el reloj interno del equipo a la hora UTC del ordenador.

 NÚII. ENTR.: En caso de seleccionar EXTERINO en la opción anterior 5/INERO, se debe especificar aquí la/s entrada/s de la tarjeta de expansión, que recibirá/n el impulso de cada una de las tarifas.

Debido a que las tarjetas de expansión del **CVMk2** se pueden insertar en diferentes posiciones, se han reservado cuatro dígitos para la configuración de las entradas. Los dígitos de mayor peso, son indicativos de la posición en la que la tarjeta de entradas está insertada en el módulo de medida del **CVMk2**.

Los dos dígitos finales corresponden al número de entrada a la que se desea asignar la tarifa 2.

A las entradas digitales correspondientes a la tarjeta de expansión insertada en el slot 1, les corresponden los números 100X. A las entradas del la tarjeta del slot 2, les corresponden los números 200X y a las entradas de la tarjeta insertada en el slot 3, le corresponden los números 300X.

Ejemplo:

Desea configurar 5 tarifas y asignarlas a las entradas 3, 4, 5 y 6 del **CVMk2** y se dispone de una tarjeta de expansión con entradas digitales estáticas, insertada en la posición 2 del módulo de medida. Debe activar 5 tarifas y configurar la entrada correspondiente a la tarifa 2 en la entrada *2003*. De éste modo se define la entrada 3 del slot 2 como la correspondiente a la tarifa 2. Las siguientes tarifas quedan configuradas en las entradas sucesivas, 4, 5 y 6.

ATENCIÓN: Las tarifas sucesivas son asignadas de forma automática a las entradas consecutivas a la configurada para la tarifa 2.

4.5 BORRAR

CVMk2 dispone de una pantalla para borrar parámetros almacenados en memoria. Para acceder a esta pantalla, debe ir al menu *CONFIG*, dentro de *FIENU*, debe desplegar el menu *FIEDIDR*, posicionar el cursor sobre *BORRAR* y confirmar pulsando *SET*.

Menu Medida	Com.	Tar je tas	
Medida Borrar			
Todo			no
Máximos			no
Minimos			no
Energía			no
D			
Demanda			no
Cont. Ext.			no
		EDIT	ՄԹԾն

Los registros que pueden borrarse en esta pantalla son:

- *TODD*.: Borrado de todos los valores almacenados. Los valores que se borran con esta opción son los máximos, mínimos, contadores de energía, máxima demanda y contadores de impulsos de las entradas de todas las tarjetas de expansión.
- INÁXIIND5: Borrado de los valores máximos almacenados, con la fecha y hora correspondientes.
- mínimos almacenados, con la fecha y hora correspondientes.
- ENERGÍA: Restablece a cero los contadores de energía acumulada, incluidos los de las diferentes tarifas en contadores actuales, mensual y anual.
- DEMRINDA: Restablece a cero los valores de máxima demanda, incluidos los de las diferentes tarifas.
- *CONT. EXT.*: Restablece a cero los valores de impulsos acumulados procedentes de las entradas de todas las tarjetas de expansión de entradas digitales.

4.6 COMUNICACIONES

Para acceder al menú de configuración de las comunicaciones del **CVMk2** debe seleccionar *CDNFIG* dentro de *MENU*.

Cuando se encuentra dentro del menu de configuración, seleccionar *COI*¹ y pulsar *5ET* para entrar en el menú. En esta pantalla se configura el puerto COM2 para comunicar el analizador con el máster PC ó PLC.

Menu Medida Com. Com.	Com. Tarjetas Com.
Núm. Perif	001
Baudios	38400
Paridad	NO
Bit datos	8
Bit stop	1
Protocolo	MODBUS ℃®⊗6

Los registros que pueden ser editados en esta pantalla son:

- *NUI*?. *PERIF*: Número de periférico que desea asignar al dispositivo. El valor debe estar comprendido entre 1 y 255.
- BRUDID5: Velocidad de comunicación asignada al puerto serie COM2. Las velocidades que pueden configurarse son: 9600, 19200, 38400 ó 57600 bps.
- PRRIDAD: Seleccionable entre ND, PAR, IMPAR.
- BIT DRTDS: 8 sin posibilidad de modificar (en protocolo Modbus/RTU).
- BIT STOP: Posibilidad de seleccionar entre 1 ó 2.
- *PROTOCOLO*: *MODBUS* sin posibilidad de modificar.

La configuración de las comunicaciones en esta pantalla afectan puerto COM2 del módulo de medida. La configuración de esta pantalla determina la velocidad de comunicación del equipo tanto si se comunica mediante el bus RS-485 o si se comunica por ethernet. En caso de comunicar a través de ethernet , esta velocidad debe coincidir con la configurada en el XPORT del conversor.

4.7 TARJETAS DE EXPANSIÓN

4.7.0. INSERCIÓN DE LAS TARJETAS DE EXPANSIÓN.

Antes de efectuar cualquier operación de mantenimiento, reparación o manipulación de cualquiera de las conexiones del equipo, debe desconectar el aparato de toda fuente de alimentación, tanto alimentación como de medida. La manipulación del equipo con alimentación es peligroso y puede provocar daños irreparables en el equipo.

Para proceder a la inserción de una tarjeta de expansión en el **CVMk2** debe seguir el siguiente procedimiento. Tener en cuenta que las imágenes hacen referencia a la inserción de una tarjeta de expansión en el slot (posición) 1. La inmediatamente inferior és la posición/slot 2 y la más alejada de los bornes de conexión, es la posición/slot3.

Desconectar alimentación del equipo. Desenroscar el tornillo y extraer la tapa de protección.

Insertar la tarjeta deslizándola entre las guías laterales

Presionar con cuidado para asegurar la correcta conexión de la tarjeta de expansión en la placa base del **CVMk2**.

Colocar nuevamente la tapa suministrada con la tarjeta y fijarla nuevamente con el tornillo.

Para acceder al menú de configuración de las diferentes tarjetas de expansión debe seleccionar *TRRJETR5* dentro del menú *CONFIG*.

Dentro del menu de configuración, seleccionar la posición de la tarjeta que desea configurar. Si selecciona una posición en la que no se encuentra insertada ninguna tarjeta, se visualiza el mensaje *ND TRRJ*. en pantalla.

Menu Medida Demanda Energía	
Calidad Tarjetas 2300.9 V	
Sistema 172.735 k	
S.total 172.735 kVA	
PF.media 0.999	Menu Medida Com. Tarjetas Medida Principal Tarjeta 1
Frec. 50.00 Hz	V.media 229 Tarjeta 2 Tarjeta 3
	P.total 172.565 W
	S.total 172.565 kWA
	PF.media 0.999
	Frec. 50.00 Hz

El menú que se muestra puede variar en función del modelo de tarjeta que se haya insertado en cada uno de los slots (ranuras de inserción). En los siguientes puntos se muestra cada uno de los menús de configuración que aparecen en cada una de las tarjetas de expansión, independientemente de la posición en la que se haya insertado.

Antes de alimentar el equipo, debe asegurarse de que todos los cables están correctamente conectados. Un mal conexionado puede producir lesiones importantes a la persona que manipula el equipo.

🔲 CIRCUTOR

4.7.1 - 8 ENTRADAS Y 8 SALIDAS DIGITALES.

 \wedge

Leer apartado 4.7.0 Inserción de tarjetas de expansión.

Para acceder a la configuración de la tarjeta de 8 entradas y 8 salidas digitales, debe entrar en menú de configuración (*ITENU ---> EONFIG.*) y seleccionar la posición donde está insertada la tarjeta, en el menú *TRRJETR5*.

Para modificar los parámetros de la configuración de la tarjeta, debe pulsar la tecla *EDIT* (F4).

Los parámetros que se configuran en la pantalla de alarmas tienen distintos significados en función de la variable eléctrica seleccionada en la línea de configuración *CDD. VRR*. (ver capítulo 8.3 Mapa de memoria Modbus para ver los códigos de todas las variables) Se distinguen dos tipos de variable eléctrica para configurar una alarma.

- Un tipo de variable es un valor instantáneo medido o calculado por el analizador. (tipo a).
- Otro tipo de variable es de energía a la que se le asigna una salida de impulsos (tipo b).

Un ejemplo de este tipo de variable puede ser energía activa consumida (kW·h) con código de variable 129.

Menu	Medida	Com.	Tar je tas]
Tarjetas	Tarjeta 1			
Alarm	a 01			
Cód.	Var.			001
Máxi	mo		00	02300
Míni	mo		00	01000
Reta	rd.ON			0001
Retard.OFF				0001
IN	PROX	ECU	EDIT	ՅՅՅն

42

La pantalla que muestra el analizador para configurar las diferentes alarmas es como muestra la figura.

4.7.1.1. Configuración de alarmas

Cuando se accede a la configuración de las tarjetas, se muestra el siguiente menú de la alarma 01.

- *COD. VAR:* El código introducido en esta variable puede ser de una variable instantánea o de energía a la que se asigna una salida de impulsos y un peso para cada impulso.
- INÁXIMD: Si se ha seleccionado una variable instantánea se debe configurar el valor máximo de la variable eléctrica. Debe entenderse como alarma de valor máximo.
 Si se ha seleccionado variable de energía, se debe indicar el peso en W·h que tiene cada impulso.
- *Ejemplo:* Si se introduce *DDD.D1D*, la alarma se activará cada 10 W•h. Se genera un impulso cada 10 W•h cuando la variable seleccionada es de energía.
- Si se ha seleccionado una variable instantánea, debe configurar el valor mínimo de la variable eléctrica instantánea. Debe entenderse como alarma de valor mínimo.
 Si se ha seleccionado una variable energía, este campo no es necesario configurarlo.
- *RETARD. DN*: Si se ha seleccionado una variable instantánea, este campo corresponde al tiempo mínimo en segundos que debe cumplirse la condición, para que se active la alarma.

Ejemplo: si se programa el valor 000010, la alarma se activará transcurridos 10 s.

Si se ha seleccionado una variable de energía, este valor corresponde al parámetro de tiempo ON. Es el número de intervalos de 10 ms que estará activada la salida para generar el impulso.

Ejemplo: si se programa el valor 000030, la alarma se activará durante 300 ms.

RETARD. DFF: Si se ha seleccionado una variable instantánea, este valor corresponde al tiempo mínimo en segundos que se debe cumplir la condición, para que se desactive la alarma.

Ejemplo: si se programa el valor 000010, la alarma se desactivará transcurridos 10 seg.

Si se ha seleccionado una variable de energía, éste valor corresponde al parámetro de tiempo OFF. Es el número de intervalos de 10 ms que estará desactivada la alarma para generar el impulso.

Ejemplo: si se programa el valor *DDDD3D*, la alarma se desactivará durante 300 ms para generar el tiempo OFF del impulso

Para acceder a la configuración de la alarma 2 y sucesivas, se debe presionar la tecla *PRDX*. (F2). De este modo se accede a las pantallas de configuración de todas las alarmas hasta un máximo de 16.

Desde la pantalla de alarma 16, pulsando nuevamente la tecla F2 (*PRDX*), se accede a la pantalla de edición de ecuaciones para la activación de las salidas físicas de la tarjeta de expansión. Las salidas que permite configurar esta tarjeta van desde la 01 hasta la 08.

Desde cualquier pantalla de alarmas es posible acceder a la pantalla de configuración de las entradas (apartado 4.7.1.3 Configuración de entradas digitales) presionando *IN* (F1). También es posible acceder a la pantalla de configuración de las ecuaciones de salida (apartado 4.7.1.2 Configuración de salidas digitales estáticas) si se pulsa *EEU* (F3).

4.7.1.1.a Configuración de alarmas asignadas a entradas digitales.

Para configurar las entradas de las tarjetas de expansión, se debe introducir el código de la entrada correspondiente. El código que le corresponde a cada entrada depende del número de entrada que se desea seleccionar y de la posición donde esté insertada la tarjeta (ver tabla adjunta).

POS. TARJETA	VARIABLE	SÍMBOLO	CODIGO	DIRECC. MODBUS
	Contador entrada 1	IN_1001	400	0C80-0C81
	Contador entrada 2	IN_1002	401	0C82-0C83
	Contador entrada 3	IN_1003	402	0C84-0C85
	Contador entrada 4	IN_1004	403	0C86-0C87
	Contador entrada 5	IN_1005	404	0C88-0C89
	Contador entrada 6	IN_1006	405	0C8A-0C8B
	Contador entrada 7	IN_1007	406	0C8C-0C8D
	Contador entrada 8	IN_1008	407	0C8E-0C8F
	Contador entrada 1	IN_2001	408	0C90-0C91
	Contador entrada 2	IN_2002	409	0C92-0C93
	Contador entrada 3	IN_2003	410	0C94-0C95
	Contador entrada 4	IN_2004	411	0C96-0C97
	Contador entrada 5	IN_2005	412	0C98-0C99
	Contador entrada 6	IN_2006	413	0C9A-0C9B
	Contador entrada 7	IN_2007	414	0C9C-0C9D
	Contador entrada 8	IN_2008	415	0C9E-0C9F
	Contador entrada 1	IN_3001	416	0CA0-0CA1
	Contador entrada 2	IN_3002	417	0CA2-0CA3
	Contador entrada 3	IN_3003	418	0CA4-0CA5
	Contador entrada 4	IN_3004	419	0CA6-0CA7
	Contador entrada 5	IN_3005	420	0CA8-0CA9
	Contador entrada 6	IN_3006	421	0CAA-0CAB
	Contador entrada 7	IN_3007	422	0CAC-0CAD
	Contador entrada 8	IN_3008	423	0CAE-0CAF

4.7.1.1.b Cambio de la lógica de alarmas según estado de las entradas

La activación de una alarma, cuando se selecciona un código de variable que corresponde al estado de una entrada de una tarjeta de expansión, se puede realizar de dos formas distintas: lógica directa o inversa.

Para configurar las alarmas con lógica directa respecto la entrada, es decir, que se active la alarma (valor =1) cuando la entrada se active (valor =1), se deben configurar los parámetros como se indica:

 $\square RX = 1 \text{ y } \square N = -1.$

Para configurar las alarmas con lógica inversa respecto la entrada, es decir, que se desactive la alarma (valor =0) cuando la entrada se active (valor =1) se deben configurar los parámetros como se indica:

MRX = 0 y MIN = 0.

4.7.1.2. Configuración de salidas digitales estáticas

En esta pantalla se configuran las ecuaciones de las alarmas que se aplican para activar las salidas del equipo. Es posible configurar ecuaciones con funciones AND (*) y/o OR (+) entre una o varias de las 16 alarmas configuradas previamente (ver apartado 4.7.1.1 Configuración de alarmas), para activar cada una de las 8 salidas digitales de la tarjeta.

Para modificar los parámetros de la configuración de las ecuaciones de la tarjeta, debe pulsar la tecla *EDIT* (F4). Seleccionar la salida que se desea configurar y pulsar *SET* para entrar en edición.

Menu	Medida Com. Tarjetas
Tarjetas T	arjeta 1
OUT 01	00*00*00*00*00*00*00*00
0UT 02	00*00*00*00*00*00*00*00
0UT 03	00*00*00*00*00*00*00*00
OUT 04	00*00*00*00*00*00*00*00
0UT 05	00*00*00*00*00*00*00*00
0UT 06	00*00*00*00*00*00*00*00
OUT 07	00*00*00*00*00*00*00*00
0UT 08	00*00*00*00*00*00*00*00
	ЕSC ОК 🔁 🖓 🖓 🔓

En la ecuación se deben editar los dos dígitos que corresponden a la alarma deseada. Entre los dos dígitos que corresponden a la alarma, se puede introducir un signo "*" ó "+" que corresponden con las funciones AND / OR respectivamente, que se aplicarán entre las alarmas configuradas.

Pulsando *RL* (F3) se retorna a la pantalla *RLRRIR DI* (apartado 4.7.1.1). Pulsando *IN* (F1) se retorna a la pantalla *ENTRRDR5* (apartado 4.7.1.3).

ATENCIÓN: El valor 00 en una ecuación de activación de las salidas, significa que no debe realizar maniobra alguna, por lo que sólo se deberían encontrar al final de la ecuación. De encontrarse el valor 00 al principio de la ecuación, el **CVMk2** no realizará el cálculo ni la activación de la salida correspondiente

4.7.1.3. Configuración de entradas digitales

Las entradas de la tarjeta se configuran también de dos formas diferentes, dependiendo de si desea configurar la entrada como un contador incremental o como una entrada lógica de dos estados (ON / OFF).

PE50 = 0000

De esta forma, la entrada queda configurada como entrada de dos estados ON/OFF. Al configurar la entrada como ON/OFF, no es necesario configurar la siguiente opción del menú, *PDS. DEC*.

PESD ≠ 0000

Al configurar el peso de la entrada diferente de cero, ésta se configura como contador incremental de impulsos cuyo valor máximo de contador es de 10M. El valor a introducir es el factor que multiplica cada impulso de la entrada.

P05. DEC: Se indican los decimales que se desea que tenga el contador de la entrada correspondiente.

Las opciones que presenta el menú inferior son:

- PROX. (F2): Incrementa el número de entrada desde la 1 hasta un máximo de 08 para acceder a su configuración. Desde la pantalla de configuración de la entrada 08, pulsando de nuevo F2 (PROX), se retorna a la pantalla de configuración de la entrada 01.
- *DUT* (F1): Pulsar esta tecla para acceder a la pantalla de configuración de alarmas, apartado 4.7.1.1.

Para grabar los parámetros modificados en cualquier pantalla, se debe pulsar la tecla $\mathcal{D}K$ (F4) antes de salir. Para salir de modo edición sin grabar los cambios, pulsar *ESE* (F3).

4.7.1.4. Conexionado entradas / salidas.

El conexionado de las entradas y salidas de la tarjeta según se muestra en el esquema:

El conexionado de las entradas y salidas de la tarjeta según se muestra en los esquemas:

4.7.1.5. Visualización de parámetros de la tarjeta 8E / 8S digitales.

Para visualizar los parámetros de la tarjeta de memoria, debe entrar en *FIENU*, seleccionar *TRRJETR5*, y desplazarse hasta la tarjeta que corresponda para ver las características.

Menu Tar	jeta 1 Tarjeta 2 Tarjeta	3
In O1	00000000	
IN 02	00000000	
IN 03	00000000	
IN 04	00000000	
IN 05	00000000	
IN 06	00000000	
IN 07	00000000	
IN 08	00000000	
INFO		Մ⊚⊗ն

En la figura se muestra el estado de las entradas digitales o el número de impulsos que ha recibido en cada una de las entradas, dependiendo de la configuración que tengan las entradas.

4.7.1.6. Características tarjeta 8E / 8S.

CARACTERÍSTICAS	VALOR	UNIDAD
ENTRADAS LÓGICAS		
Tipo de entrada	Libre de tensión / NPN	
Tipo de acoplamiento	Entrada optoaislada	
Tensión máxima	24	Vdc
ION	< 8	mA
Consumo entrada	< 0,5	W
Tiompoo mínimoo	t on 40	ms
nempos minimos	t off 40	ms
SALIDA ESTÁTICA		
Tensión nominal	150 / 250	VDC / VAC
Corriente nominal	< 100	mA
Corriente máxima	< 150	mA
Potencia máxima de disipación	0.8	W
Máxima Ron	25	Ω
CONEXIONADO		
Sección en conductor (Cu)	0,051 (AWG 3018)	mm ²
Par de apriete del borne	0,3	Nm

4.7.2 - 8 ENTRADAS DIGITALES Y 4 SALIDAS RELÉ

Leer apartado 4.7.0 Inserción de tarjetas de expansión.

Para acceder a la configuración de la tarjeta de 8 entradas y 4 salidas relé, debe entrar en menú de configuración (*FIENU ---> CONFIG.*) y seleccionar la posición donde está insertada la tarjeta, dentro del menú *TARJETR5*.

Para poder modificar los parámetros de configuración de la tarjeta debe pulsar la tecla *EDIT*.

Los parámetros que se configuran en la pantalla de alarmas tienen distintos significados en función de la variable eléctrica seleccionada en la línea de configuración *CDD. VRR*. (ver capítulo 8.3 Mapa de memoria Modbus para ver los códigos de todas las variables). Se distinguen dos tipos de variable eléctrica para configurar una alarma.

- Un tipo de variable es un valor instantáneo medido o calculado por el analizador. (tipo a).

- Otro tipo de variable es energía a la que se le asigna una salida de impulsos (tipo b). Un ejemplo de este tipo de variable puede ser energía activa consumida con código 129.

Menu Medida Tarjetas Tarjeta 1	Com. Tarjetas	
Alarma O1		
Cód. Var.	001	
Máximo	0002300	
Mínimo	0001000	
Retard.ON	0001	
Retard.OFF	0001	
IN PR0X	ECU EDIT 🖄 🖸 🗟 🛇 I	6

4.7.2.1. Configuración de alarmas

Cuando se accede a la configuración de las tarjetas, se muestra el siguiente menú de la alarma 01.

- *COD. VRR:* El código introducido en esta variable puede ser de una variable instantánea o de energía a la que se asigna una salida de impulsos y un peso para cada impulso.
- MÁXIMD: Si se ha seleccionado una variable instantánea se debe configurar el valor máximo de la variable eléctrica. Debe entenderse como alarma de valor máximo.
 Si se ha seleccionado variable de energía, se debe indicar el peso en W·h que tiene cada impulso.
- *Ejemplo:* Si se introduce *DDD.D1D*, la alarma se activará cada 10 W•h. Se genera un impulso cada 10 W•h cuando la variable seleccionada es de energía.
- Si se ha seleccionado una variable instantánea, debe configurar el valor mínimo de la variable eléctrica instantánea. Debe entenderse como alarma de valor mínimo.
 Si se ha seleccionado una variable energía, este campo no es necesario configurarlo.
- *RETARD. DN:* Si se ha seleccionado una variable instantánea, este campo corresponde al tiempo mínimo en segundos que debe cumplirse la condición, para que se active la alarma.

Ejemplo: si se programa el valor *DDDDD*, la alarma se activará transcurridos 10 s.

Si se ha seleccionado una variable de energía, este valor corresponde al parámetro de tiempo ON. Es el número de intervalos de 10 ms que estará activada la salida para generar el impulso.

Ejemplo: si se programa el valor *000030*, la alarma se activará durante 300 ms.

RETARD. DFF: Si se ha seleccionado una variable instantánea, este valor corresponde al tiempo mínimo en segundos que se debe cumplir la condición, para que se desactive la alarma.

Ejemplo: si se programa el valor *DDDDD*, la alarma se desactivará transcurridos 10 seg.

Si se ha seleccionado una variable de energía, éste valor corresponde al parámetro de tiempo OFF. Es el número de intervalos de 10 ms que estará desactivada la alarma para generar el impulso.

Ejemplo: si se programa el valor *DDDD3D*, la alarma se desactivará durante 300 ms para generar el tiempo OFF del impulso

Para acceder a la configuración de la alarma 2 y sucesivas, se debe presionar la tecla *PRDX*. (F2). De este modo se accede a las pantallas de configuración de todas las alarmas hasta un máximo de 16.

Desde la pantalla de configuración de la alarma 16, pulsando nuevamente la tecla F2 (*PRDX*), se accede a la pantalla de edición de ecuaciones para la activación de las salidas físicas de la tarjeta de expansión. Las salidas que permite configurar esta tarjeta van desde la 01 hasta la 04.

Desde cualquier pantalla de alarmas es posible acceder a la pantalla de configuración de las entradas (apartado 4.7.2.3 Configuración de entradas digitales) presionando *I*N (F1). También es posible acceder a la pantalla de configuración de las ecuaciones de salida (apartado 4.7.2.2 Configuración de salidas relé) si se pulsa *ECU* (F3).

4.7.2.1.a Configuración de alarmas según entradas digitales.

Para configurar las entradas de las tarjetas de expansión, se debe introducir el código de la entrada correspondiente. El código que le corresponde a cada entrada depende del número de entrada que se desea seleccionar y de la posición donde esté insertada la tarjeta (ver tabla adjunta).

POS. TARJETA	VARIABLE	SÍMBOLO	CODIGO	DIRECC. MODBUS
	Contador entrada 1	IN_1001	400	0C80-0C81
	Contador entrada 2	IN_1002	401	0C82-0C83
	Contador entrada 3	IN_1003	402	0C84-0C85
	Contador entrada 4	IN_1004	403	0C86-0C87
	Contador entrada 5	IN_1005	404	0C88-0C89
	Contador entrada 6	IN_1006	405	0C8A-0C8B
	Contador entrada 7	IN_1007	406	0C8C-0C8D
	Contador entrada 8	IN_1008	407	0C8E-0C8F
	Contador entrada 1	IN_2001	408	0C90-0C91
	Contador entrada 2	IN_2002	409	0C92-0C93
	Contador entrada 3	IN_2003	410	0C94-0C95
	Contador entrada 4	IN_2004	411	0C96-0C97
IARJE IA Z	Contador entrada 5	IN_2005	412	0C98-0C99
	Contador entrada 6	IN_2006	413	0C9A-0C9B
	Contador entrada 7	IN_2007	414	0C9C-0C9D
	Contador entrada 8	IN_2008	415	0C9E-0C9F
	Contador entrada 1	IN_3001	416	0CA0-0CA1
	Contador entrada 2	IN_3002	417	0CA2-0CA3
	Contador entrada 3	IN_3003	418	0CA4-0CA5
	Contador entrada 4	IN_3004	419	0CA6-0CA7
IARJE IA 3	Contador entrada 5	IN_3005	420	0CA8-0CA9
	Contador entrada 6	IN_3006	421	0CAA-0CAB
	Contador entrada 7	IN_3007	422	0CAC-0CAD
	Contador entrada 8	IN_3008	423	0CAE-0CAF

4.7.2.1.b Cambio de la lógica de alarmas según estado de las entradas

La activación de una alarma, cuando se selecciona un código de variable que corresponde al estado de una entrada de una tarjeta de expansión, se puede realizar de dos formas distintas: lógica directa o inversa.

Para configurar las alarmas con lógica directa respecto a la entrada, es decir, que se active la alarma (valor =1) cuando la entrada se active (valor =1), se deben configurar los parámetros como se indica:

MRX = 1 y MIN = -1.

Para configurar las alarmas con lógica inversa respecto a la entrada, es decir, que se desactive la alarma (valor =0) cuando la entrada se active (valor =1) se deben configurar los parámetros como se indica:

 $\Pi R X = 0 \text{ y } \Pi I N = 0.$

4.7.2.2. Configuración de salidas relé

En esta pantalla se configuran las ecuaciones de las alarmas que se aplican para activar las salidas del equipo. Es posible configurar ecuaciones con funciones AND (*) y/o OR (+) entre una o varias de las 16 alarmas configuradas previamente (ver apartado 4.7.2.1 Configuración de alarmas), para activar cada una de las 4 salidas relé del equipo.

Para modificar los parámetros de la configuración de la tarjeta, se debe pulsar la tecla *EDIT* (F4). Seleccionar la salida que se desea configurar y pulsar *SET* para entrar en edición.

				1
Menu	Me	dida Com.	Tar je tas]
Tar jet:	as Tarje	ta 1		
OUT	01	00*00*00	*00*00*00	*00*00
OUT	02	00*00*00	*00*00*00	*00*00
OUT	03	00*00*00	*00*00*00	*00*00
OUT	04	00*00*00	+00+00+00	*00*00
		ESC	ok é	°U ⊇⊗6

ATENCIÓN: El valor 00 en la ecuación de activación de las salidas, significan que no debe hacer nada, por lo que sólo se deberían encontrar al final de la ecuación. De encontrarse al principio, el **CVMk2** no realizará el cálculo ni la activación de la salida correspondiente

Pulsando *RL* (F3) se retorna a la pantalla *RLRRIA DI* (apartado 4.7.2.1). Pulsando *IN* (F1) se retorna a la pantalla *ENTRADRS* (apartado 4.7.2.3).

En la ecuación se deben editar los dos dígitos que corresponden a la/s alarma/s deseadas. Entre los dos dígitos que corresponden a la alarma, se puede introducir un signo "*" ó "+" que corresponden con las funciones AND / OR respectivamente, que se aplicarán entre las alarmas configuradas.

Menu Tarjetas	Medida Tarjeta 1	Com.	Tar jetas	
Entra	da 01			
Peso				0001
Pos.	Dec.			1
		ESC	ok 25	Т⋑⋟∎

4.7.2.3. Configuración de entradas digitales

Las entradas de la tarjeta se configuran también de dos formas diferentes, dependiendo de si desea configurar la entrada como un contador incremental o como una entrada lógica de dos estados (ON/OFF).

PE50 = 0000

Configurando el peso de la entrada igual a cero, la entrada queda configurada como entrada estados ON/OFF. Al configurar la entrada como booleana, no es necesario configurar la siguiente opción del menú, *PD5. DEC*.

PESD ≠ 0000

Al configurar el peso de la entrada diferente de cero, ésta se configura como contador incremental de impulsos cuyo valor máximo de contador es de 10 M. El valor a introducir es el factor que multiplica a cada impulso de la entrada.

PD5. DEC: Indicar los decimales que se desea que tenga el contador de la entrada correspondiente.

Las opciones que presenta el menú inferior son:

- PROX. (F2): Incrementa el número de entrada desde la 1 hasta un máximo de 08 para acceder a su configuración. Desde la pantalla de configuración de la entrada 08, pulsando de nuevo F2 (PROX), se retorna a la pantalla de configuración de la entrada 01.
- *DUT* (F1): Pulsar esta tecla para acceder a la pantalla de configuración de alarmas, apartado 4.7.2.1.

Para grabar los parámetros modificados en cualquier pantalla, se debe pulsar la tecla $\Im K$ (F4) antes de salir. Para salir de modo edición sin grabar los cambios, pulsar *ESE* (F3).

9 Ø

4.7.2.4. Conexionado de entradas / salidas

El conexionado de las entradas y salidas de la tarjeta es como muestra la figura:

ENTRADAS	SALIDAS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1- COMÚN 2- ENTRADA 1 3- ENTRADA 2 4- ENTRADA 3 5- ENTRADA 4 6- ENTRADA 5 7- ENTRADA 6 8- ENTRADA 7 9- ENTRADA 8	1- COMÚN RELÉ 1 2- N.A RELÉ 1 3- COMÚN RELÉ 2 4- N.A RELÉ 2 5- COMÚN RELÉ 3 6- N.A RELÉ 3 7- COMÚN RELÉ 4 8- N.A. RELÉ 4 9- N.C. RELÉ 4

El conexionado de las entradas y salidas de la tarjeta según se muestra en los esquemas:

4.7.1.5. Visualización de parámetros de la tarjeta

Para visualizar los parámetros de la tarjeta de memoria, debe entrar en *ITENU*, seleccionar *TRRJETRS*, y desplazarse hasta la tarjeta que corresponda para ver las características.

Menu Ta	rjeta 1 Tarjeta 2 Tarjeta	3
IN 01	0000000	
IN 02	00000000	
IN 03	00000000	
IN 04	00000000	
IN 05	00000000	
IN 06	00000000	
IN 07	00000000	
IN 08	00000000	
INFO		Մ∍⊗ճ

En la figura se muestra el estado de las entradas digitales o el número de impulsos que ha recibido en cada una de las entradas, dependiendo de la configuración que tengan las entradas.

4.7.2.6. Características.

CARACTERÍSTICAS	VALOR UNIDAD	
ENTRADAS LÓGICAS		
Tipo de entrada	Contacto libre tensión	
Tipo de acoplamiento	Entrada optoaislada	
Tensión máxima	24	VDC
I ON	< 8	mA
Consumo por entrada	< 0,5	W
Tiemper mínimer, tou / terr	t _{on} 40	ms
	t _{off} 40	ms
SALIDA RELÉ		
Tensión nominal	230 / 125	VAC / VDC
Corriente nominal	6 / 1,5	AAC / ADC
Carga máxima VAC	250 / 6	VAC / AAC
Carga máxima VDC	30 / 6	VDC / ADC
Carga mínima dol roló	1	VAC / VDC
	1	mA
Vida mecánica	5 x 10 ⁶	ciclos
Vida eléctrica en carga nominal	NA:5 x 10 ⁴ , NC:3 x 10 ⁴	ciclos
CONEXIONADO		
Sección en conductor (Cu)	0,051 (AWG 3018)	mm ²
Par de apriete del borne	0,3	Nm

4.7.3 - 8 ENTRADAS ANALÓGICAS Y 4 SALIDAS ANALÓGICAS

Leer apartado 4.7.0 Inserción de tarjetas de expansión.

Para acceder a la configuración de la tarjeta de 8 entradas y 4 salidas analógicas, entrar en menú de configuración (*TIENU ---> CONFIG.*) y seleccionar la posición donde está insertada la tarjeta, en el menú *TARJETRS*. Pulsar *SET* para entrar en el menú de la tarjeta.

Menu Medida	Com. Tarjetas
Medida Principal	Tarjeta 1
V.media	230 Tar je ta 2 Tar je ta 3
P.total	172.905
S.total	172.905 kVA
PF.media	0.999
Frec.	50.00 Hz
THE THE	

Para acceder a los parámetros de configuración de la tarjeta debe pulsar la tecla *EDIT* (F4). Seleccionar la salida analógica deseada y pulsar *SET* para entrar en modo edición.

Menu Medida Tarjetas Tarjeta 3 A/D OUT 01	Com. Tarjetas
Cód. Var.	001
Escala	0-20mA
Cero	00000.0
Fondo Esc.	01000.0
IN PROX	

4.7.3.1. Configuración de salidas analógicas.

La pantalla de configuración de las salidas analógicas de la tarjeta es como muestra la figura:

Menu	Medida	Com.	Tar jetas]
Tarjetas	Tarjeta 3			
A/D 0	UT 01			
Cód.	Var.			001
Esca	la		4	-20mA
Cero			+00	010.0
Fond	o Esc.		01	500.0
		ESC	ок 2	Ր⊇⊗ն

Los parámetros de configuración de las salidas analógicas son:

- *CDD.VRR*: Código de la variable eléctrica instantánea que se desea asignar a la salida (ver capítulo 8.3 Mapa de memoria Modbus para ver los códigos de todas las variables). No se permite código de energía.
- *ESCRLR*: Se puede seleccionar entre *D* y *Y* que corresponden a las escalas 0...20 mA y 4...20 mA respectivamente.
- *CERD*: Valor que debe tener la variable para tener a la salida 0 ó 4 mA (depende de la escala seleccionada).
- FONDO ESC.: Valor que debe tener la variable para tener a la salida 20 mA.

Las teclas de función nos muestran las siguientes opciones en el modo de edición:

- *ESE*: Salir de la pantalla actual sin salvar los cambios.
- *ОК*: Confirma y graba los cambios realizados.

Las diferentes teclas que aparecen en esta pantalla son:

- *PRDX*: Incrementa el número de salida hasta un máximo de 4 (*R/D DUT D4*). Pulsando nuevamente retorna a la salida 01 (*R/D DUT D1*).
- IN: Desde cualquier pantalla, pulsar esta tecla para ir a pantalla de configuración de las entradas analógicas. (Apartado 4.7.3.3 Configuración de entradas analógicas)
- *EDIT*: Pulsar para acceder al menú de edición. Con las flechas de desplazamiento se selecciona el parámetro que se desea modificar (en negrita). Entrar pulsando *SET*.

4.7.3.2. Configuración alarmas en función de las entradas analógicas.

Para configurar alarmas en función del valor de las entradas analógicas de las tarjetas de expansión, se debe introducir el código de la entrada correspondiente. El código que le corresponde a cada entrada depende del número de entrada que se desea seleccionar y de la posición donde esté insertada la tarjeta (ver tabla adjunta).

POS. TARJETA	VARIABLE	SÍMBOLO	CODIGO	DIRECC. MODBUS
	Entrada analógica 1	AD_1001	424	0CB2-0CB3
	Entrada analógica 2	AD_1002	425	0CB4-0CB5
	Entrada analógica 3	AD_1003	426	0CB6-0CB7
	Entrada analógica 4	AD_1004	427	0CB8-0CB9
	Entrada analógica 5	AD_1005	428	0CBA-0CBB
	Entrada analógica 6	AD_1006	429	0CBC-0CBD
	Entrada analógica 7	AD_1007	430	0CBE-0CBF
	Entrada analógica 8	AD_1008	431	0CC0-0CC1
	Entrada analógica 1	AD_2001	432	0CC2-0CC3
	Entrada analógica 2	AD_2002	433	0CC4-0CC5
	Entrada analógica 3	AD_2003	434	0CC6-0CC7
TARJETA 2	Entrada analógica 4	AD_2004	435	0CC8-0CC9
	Entrada analógica 5	AD_2005	436	0CCA-0CCB
	Entrada analógica 6	AD_2006	437	0CCC-0CCD
	Entrada analógica 7	AD_2007	438	0CCE-0CCF
	Entrada analógica 8	AD_2008	439	0CD0-0CD1
	Entrada analógica 1	AD_3001	440	0CD2-0CD3
	Entrada analógica 2	AD_3002	441	0CD4-0CD5
TARJETA 3	Entrada analógica 3	AD_3003	442	0CD6-0CD7
	Entrada analógica 4	AD_3004	443	0CD8-0CD9
	Entrada analógica 5	AD_3005	444	0CDA-0CDB
	Entrada analógica 6	AD_3006	445	0CDC-0CDD
	Entrada analógica 7	AD_3007	446	0CDE-0CDF
	Entrada analógica 8	AD_3008	447	0CE0-0CE1

Para poder configurar un alarma mediante su código de variable, es necesario dsponer de una tarjeta de salidas relé o transistor que nos permita introducir el código correspondiente y el valor máximo o mínimo y asignarlo a una alarma para activar una salida.

4.7.3.3. Configuración de entradas analógicas.

La pantalla de configuración de las entradas analógicas de la tarjeta es como muestra la figura:

One True La A	
Com. Tarjet	as
	0-20mA
	000000
	010000
	000001
	-
SC OK	т⊚⊳б
	SC 0K

Las diferentes teclas que aparecen en esta pantalla son:

- *PRDX*: Incrementa el número de entrada hasta un máximo de 8 (*R/D IN DB*). Pulsando nuevamente se vuelve a la entrada 01 (*R/D IN DI*).
- *DUT*: Desde cualquier pantalla de las entradas, pulsar esta tecla para acceder a pantalla de configuración de las salidas. (Apartado 4.7.3.1).
- *EDIT*: Pulsar esta tecla para acceder al menú de edición de los parámetros. Con las flechas de desplazamiento se selecciona el parámetro que se desea modificar (aparece en negrita) y se accede a los parámetros pulsando *SET*.

Los parámetros de configuración de las entradas analógicas son:

- *ESCRLR*: Rango deseado en la entrada. Seleccionar entre 0...20 mA ó 4...20 mA.
- *CERD*: Valor que se desea visualizar en el punto cero de la recta. (4 ó 20 mA).
- FONDO ESC.: Valor que se desea visualizar cuando existan 20 mA en la entrada.
- POS. DEC.: Posición del punto decimal.

En la pantalla de edición de parámetros nos aparecen las siguientes teclas:

- *ESE*: Sale de la pantalla actual sin salvar los cambios.
- *ШК*: Graba los cambios realizados y sale de la pantalla de edición.

El conexionado de las entradas y salidas de la tarjeta es como muestra la figura:

ENTRADAS	SALIDAS
1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9
0000000000	0000000000
1- COMUN 2- Entrada Analógica 1 3- Entrada Analógica 2 4- Entrada Analógica 3 5- Entrada Analógica 4 6- Entrada Analógica 5 7- Entrada Analógica 6 8- Entrada Analógica 7 9- Entrada Analógica 8	1- COMUN 2- Salida Analógica 1 3- COMUN 4- Salida Analógica 2 5- COMUN 6- Salida Analógica 3 7- COMUN 8- Salida Analógica 4 9- Vaux EXTERNA

Las salidas analógicas del CVMk2 son activas, No necesitan conectar una fuente externa para generar la salida de 20 mA.

Un ejemplo de conexionado de las salidas de la tarjeta es como se muestra en el esquema:

La tarjeta permite alimentación externa de las salidas analógicas en caso de que la carga conectada a las salidas sea superior a los 300 Ω . Para alimentar externamente las salidas se debe cambiar la posición del jumper de la placa a la posición 2, como indica la figura. Para conectar la fuente, el positivo se debe conectar en el borne nº 9 y el negativo de la fuente se debe conectar a cualquiera de los comunes.

4.7.3.4. Visualización de parámetros de la tarjeta

Para visualizar los parámetros de la tarjeta de entradas y salidas analógicas, debe entrar en *ITENU*, seleccionar *TRRJETR5*, y desplazarse hasta la tarjeta que corresponda para ver las características.

En este menú es posible visualizar el valor de cada una de las entradas de la tarjeta.

Menu	Tarjeta 1	Tarjeta 2 Tarje	eta 3
Tarjeta 3 Ta	arjeta 3		
AD IN C)1	00000001	
AD IN C)2	00000001	
AD IN C)3	00000001	
AD IN C)4	00000001	
AD IN C)5	00000001	
AD IN C)6	00000001	
AD IN C)7	00000001	
AD IN C)8	00000001	
INFO			υBOG

En la pantalla se muestra el valor de las entradas analógicas de la tarjeta, dependiendo de la configuración que se haya asignado a cada una de ellas.

4.7.3.5. Características

CARACTERÍSTICA	VALOR	UNIDAD
SALIDAS ANALÓGICAS		
Tensión máxima interna	12	VDC
Tensión máxima externa	24	VDC
Margen nominal de la salida	0/4 20	mA
Linealidad	1	%
Resistencia de carga	< 300	Ω
Resistencia de carga (alimentación externa)	600	Ω
Resolución	4.000	puntos
ENTRADAS ANALÓGICAS		
Tipo de medida	Corriente	
Margen nominal de la entrada	0 / 4 20	mA c.c
Precisión de la medida	1	%
Impedancia de entrada	200	Ω
CONEXIONADO		
Sección en conductor (Cu)	0,051 (AWG 3018)	mm ²
Par de apriete del borne	0,3	Nm
MECÁNICA		
Protección bornes	IP 20	

4.7.4 - ETHERNET Y MEMORIA SD

Leer apartado 4.7.0 Inserción de tarjetas de expansión.

ATENCIÓN: Al instalar una tarjeta tipo SD en el equipo, se formatea automáticamente. Se recomienda no instalar tarjetas con documentos que quiera conservar. El formato de la tarjeta debe ser FAT16 y la capacidad máxima es de 2Gb. No permite formatos FAT32, HCSD ni NTFS.

Para acceder a la configuración de la tarjeta ethernet y memoria SD, entrar en menú de configuración (*FIENU ---> CONFIG.*) y seleccionar la posición donde esté insertada la tarjeta, en el menú *TRRJETR5*.

Menu Medida	Com. Tarjetas
Medida Principal	Tarjeta 1
V.media	230 Tar jeta 2 Tar jeta 3
P.total	172.905
S.total	172.905 kWA
PF.media	0.999
Frec.	50.00 Hz
INF0 MAX	MIN UDOG

En la pantalla de configuración de la tarjeta ethernet y memoria SD, es posible borrar todos los archivos almacenados en memoria. Los datos grabados se dividen básicamente en dos formatos, como se puede ver en la figura: los eventos de calidad que tienen la extensión *.EVQ y los registros estándar que tienen la extensión *.STD.

Se genera un único archivo de eventos *.EVQ donde se almacenan todos los eventos. Los archivos *.STD se generan automáticamente cada día.

Menu Medida Com. Tarjet Tarjetas Tarjeta 2	as
Borrar STD	no
Borrar EVQ	no
Formatear	no
Extraer	no
EDIT	\$U906

Para modificar los parámetros de configuración de la tarjeta, se debe pulsar la tecla *EDIT* (F4). Seleccionar la opción que deseada para configurar y pulsar *SET* para entrar en edición.

Es posible seleccionar entre los valores 5I o ND con las teclas arriba/abajo y se confirma con la tecla 5ET y posteriormente DK.

Las teclas de la pantalla de edición son:

- *ESE*: Sale de la pantalla actual sin salvar los cambios.
- ОК: Salva los cambios realizados y sale de la pantalla de edición.

Los parámetros de configuración en esta pantalla son:

- BORRAR STD: Elimina el último día almacenado en memoria SD (*.STD).
- BORRAR EVQ: Elimina el archivo de calidad almacenado en memoria SD (*.EVQ).
- FORMATERR: Elimina todo los archivos almacenados en memoria SD.
- *EXTRRER:* Detiene la comunicación entre el equipo y la memoria externa para poder extraer la tarjeta SD.

4.7.4.1. Protocolo de red y comunicaciones.

La tarjeta ethernet y memoria SD del **CVMk2**, está diseñada específicamente para comunicar en redes ethernet con protocolo Modbus/TCP.

Mediante este sistema optimiza extraordinariamente todo el cableado del BUS de comunicación RS-485, optimizando así infraestructuras informáticas ya creadas, y facilitar su instalación.

4.7.4.2. Configuración de la dirección IP

La IP que asigna al **CVMk2** mediante comandos arp, es temporal y el equipo recupera la IP original al perder la alimentación. Para grabar en el equipo la nueva IP, debe entrar en el menú de configuración, verificar las modificaciones y salir del menú salvando los cambios. De esta forma la nueva IP queda guardada en el analizador.

Para configurar la dirección IP de la tarjeta ethernet, se pueden utilizar los comandos ARP.

En cuanto al comando ARP de Windows, la tabla ARP del PC tiene que tener como mínimo una dirección IP definida además de la suya propia. Si la tabla de ARP está vacía, el comando retornará un mensaje de error. Desde una ventana de comando, debe escribir "arp -a", para verificar que existe como mínimo una entrada en la tabla ARP. Si no existe la tabla de ARP o la máquina que se usa es la única en la tabla, debe hacerse un ping a cualquier otra dirección IP existente en la red para generar una nueva entrada en la tabla. Como ejemplo se muestran los comandos a enviar en el supuesto de que se desee configurar la dirección IP 172.16.14.254 y la dirección MAC de la tarjeta sea 00-20-4A-8D-66-66

a) Se introduce el siguiente comando para asignar la dirección IP temporal a la tarjeta de expansión.

c:\ arp -s 172.16.14.254 00-20-4A-8D-66-66

b) Se realiza un telnet al puerto 1. El primer intento de conexión siempre falla, pero el **CVMk2** cambia temporalmente su IP a la que le ha asignado anteriormente.

c:\ telnet 172.16.14.254 1

c) Se realiza un telnet al puerto 9999 para poder acceder al menú de configuración.

c:\ telnet 172.16.14.254 9999

El menú de configuración es como muestra la figura.

Press Enter to go into Setup Mode Model: Device Server Plus+! (Firmware Code:XA) Modbus/TCP to RTU Bridge Setup 1) Network/IP Settings: IP Address	. 🗆 🗙
Model: Device Server Plus+! (Firmware Code:XA) Modbus/TCP to RTU Bridge Setup 1) Network/IP Settings: IP Address	^
Modbus/TCP to RTU Bridge Setup 1) Network/IP Settings: IP Address	
CP1 Not Used CP2 RS485 Output Enable CP3 Not Used 4) Advanced Modbus Protocol settings: Slave Addr/Unit Id Source Modbus/TCP header Modbus Serial Broadcasts Disabled (Id=0 auto-mapped to 1) MB/TCP Exception Codes Yes (return 00AH and 00BH) Char, Message Timeout 00050msec, 05000msec D)efault settings, S)ave, Q)uit without save Select Command or parameter set (14) to change: _	

En este menú se puede configurar todas las opciones del conversor ethernet de la tarjeta del CVMk2. Una vez terminada la configuración deseada, debe salir de la aplicación guardando los cambios.

La velocidad configurada en el menú de configuración del puerto ethernet del CVMk2 debe coincidir con la velocidad configurada en el propio equipo (ver capítulo 4.6 Comunicaciones). En caso de no coincidir, el equipo no comunicará correctamente con la aplicación o master.

La conexión con el sistema master, se realiza mediante cableado ethernet de cuatro pares trenzados (apantallado). Se conecta en un extremo la tarjeta y al otro extremo la electrónica de red (hub o switch) de la red corporativa.

En caso de realizar una conexión directa con un ordenador o dispositivo con entrada ethernet, los hilos del cable ethernet deben tener una disposición especial para dicha comunicación. Otra forma de configurar la dirección IP de la tarjeta de expansión del **CVMk2** es mediante el Power Studio. o Power Studio Scada de **CIRCUTOR**, **SA**. (disponible en la página web www. circutor.es).

Una vez instalado, debe seleccionarse el dispositivo **CVMk2 Ethernet Modbus/TCP.** La pantalla de configuración es como muestra la figura.

🍋 Nuevo CVMk2 Ethernet	X	
Nombre		
JCVMK2		
Descripción		
analizador		
Número de periférico 1		
Dirección IP		
172.16.14.254		
Puerto 502	Puerto de configuración 30718	
Parámetros Onfiguración avanzada		
🖌 Aceptar	🔀 Cancelar	

Se debe asignar un nombre y la dirección IP deseada. La dirección IP debe estar en el mismo límite de direcciones que la que tiene el ordenador. Este paso dará un error, puesto que no encontrará el dispositivo con la IP que se ha asignado y mostrará la pantalla siguiente para solicitarnos la dirección MAC de la tarjeta.

🍋 Configuración del dispositivo CVMk2 Ether	🗙	
Dirección física (MAC)		
Dirección IP		
172 . 16 . 14 . 254		
Dirección física (MAC): Dirección Ethernet que viene en la etiqueta de cada equipo, la cual es única y distinta en todos los dispositivos de red. Es la dirección hardware que todo interface de red tiene. Será del tipo 00-20-4A-61-05-19.		
🖌 🖌 Aceptar		

Se debe introducir la dirección MAC de la tarjeta ethernet y pulsar aceptar. El software envía la nueva dirección IP a la tarjeta de expansión del analizador.

4.7.4.3. Configuración de la tarjeta SD

Una vez introducida la tarjeta, debe procederse a la configuración de la misma. Para ello, debe seleccionar la opción *I*¹*ENU* de la barra superior del display y pulsar *5ET* para desplegar la ventana.

De las tres opciones que aparecen en el desplegable (tarjeta 1, tarjeta 2 o tarjeta3), seleccionar la posición, empezando a contar desde la parte superior del equipo, en la que se encuentre insertada la tarjeta de expansión.

NOTA: Si se selecciona una posición en la que no hay ninguna tarjeta insertada, se muestra por pantalla el mensaje *ND TRRJ*. Se confirma la selección con la tecla *5ET* para proseguir con la configuración de la tarjeta.

4.7.4.4. Visualización de parámetros de la tarjeta SD

Para visualizar los parámetros de la tarjeta de memoria, debe entrar en *ITENU*, seleccionar *TRRJETR5*, y desplazarse hasta la tarjeta que corresponda para ver las características.

Menu Tarjeta	1 Tarjeta 2 Tarjeta 3	
Tarjeta 2 Tarjeta 2		
Tam.Mem.	1024 MB	
Registro	12 días	
Eventos	321 eve	
Libre	99.99x	
Estado	SD OK	
INFO		06

TRI MEM: Indica la capacidad total real de la tarjeta SD.

REGISTRO: Indica los días de registro desde el inicio o último formateo.

EVENTOS: Indica el número de eventos de tensión detectados desde el inicio o último formateo.

LIBRE: Indica el porcentaje de memoria libre.

- ESTROD: El estado de la memoria se indica con texto además del icono de la parte inferior de la pantalla.
 - a) 5D DK: La tarjeta de memoria funciona correctamente.
 - b) *NO SD*: No hay ninguna tarjeta insertada.
 - c) PROT ESER: La tarjeta está protegida contra escritura.
 - d) ERROR: La tarjeta SD tiene un error y se debe formatear.

4.7.4.5. Iconos de tarjeta de expansión

Estado de la memoria SD correcto.

- Estado de la memoria SD no correcto.
- Extracción de tarjeta SD habilitada.

Si se presenta un error de tarjeta es aconsejable formatearla. Si después de formatear la tarjeta SD persiste el error, debe asegurarse de que el formato es SD FAT16 y de capacidad inferior o igual a 2Gb. Otro formato o mayor capacidad no funciona. Si persiste el error debe sustituir la tarjeta de memoria.

4.7.4.6. Características de la conexión ethernet

SALIDA ETHERNET			
Protocolo de red	ethernet RJ-45		
Protocolo de comunicación	Modbus/TCP		
Velocidad	Compatible 10baseT / 100baseTx		
TARJETA SD			
Tipo de tarjeta	SD		
Capacidad máxima	2 Gb		
Formato	FAT 16		

4.7.5 - TARJETA DE EXPANSIÓN DE MEMORIA SD

Leer apartado 4.7.0 Inserción de tarjetas de expansión.

ATENCIÓN: Al instalar una tarjeta tipo SD en el equipo, se formatea automáticamente. Se recomienda no instalar tarjetas con documentos que quiera conservar. El formato de la tarjeta debe ser FAT16 y la capacidad máxima es de 2 Gb. No permite formatos FAT32, HCSD ni NTFS.

4.7.5.1. Configuración de la tarjeta SD

Una vez introducida la tarjeta, debe procederse a la configuración de la misma. Para ello, debe seleccionar la opción *l'IENU* de la barra superior del display y pulsar *SET* para desplegar la ventana.

De las tres opciones que aparecen en el desplegable (tarjeta 1, tarjeta 2 o tarjeta 3), seleccionar la posición, empezando a contar desde la parte superior del equipo, en la que se encuentre insertada la tarjeta de expansión ethernet.

NOTA: Si se selecciona una posición en la que no hay ninguna tarjeta insertada, se muestra por pantalla el mensaje *ND TRRJ*.

Se confirma la selección con la tecla *SET* para proseguir con la configuración de la tarjeta.

Menu Medida Com. Tarjet Tarjetas Tarjeta 2	e s
Borrar STD	no
Borrar EVQ	no
Formatear	no
Extraer	no
EDIT	∕≊v ∋⊗6

Los datos grabados se dividen básicamente en dos formatos, como se puede ver en la figura: los eventos de calidad que tienen la extensión *.EVQ y los registros estándar que tienen la extensión *.STD.

Se genera un único archivo de eventos *.EVQ donde se almacenan todos los eventos. Los archivos *.STD se generan automáticamente cada día.

Para modificar los parámetros de configuración de la tarjeta, se debe pulsar la tecla *EDIT* (F4). Seleccionar la opción que deseada para configurar y pulsar *SET* para entrar en edición.

Se puede cambiar el valor entre 5l o ND con las teclas arriba/abajo y se confirma con la tecla DK. Si selecciona 5l, indica que de desea borrar el archivo seleccionado

Las teclas de la pantalla de edición son:

- *ESE*: Salir de la pantalla actual sin grabar los cambios.
- 0K: Grabar los cambios realizados y salir de la pantalla de edición.

Los parámetros de configuración en esta pantalla son:

BORRAR 5TD: Elimina el último día almacenado en memoria SD (*.STD).

BORRAR EVQ: Elimina el archivo de calidad almacenado en memoria SD (*.EVQ).

- FORMATERR: Elimina todo los archivos almacenados en memoria SD.
- *EXTRRER:* Detiene la comunicación entre el equipo y la memoria externa para poder extraer la tarjeta SD.

4.7.5.2. Visualización de parámetros de la tarjeta SD

Para visualizar los parámetros de la tarjeta de memoria, debe entrar en *I*TENU, seleccionar *TRRJETRS*, y desplazarse hasta la tarjeta que corresponda para ver las características.

Menu T	arjeta 1 Tarjeta 2 Tarjeta 3	
Tarjeta 2 Tarj	ieta 2	
Tam.Mem.	1024 MB	
Registro	12 días	
Eventos	321	
Libre	99.99x	
Estado	SD OK	
		05
INFO		

Los parámetros que se pueden visualizar en esta pantalla son:

- TRI ITEN: Capacidad total real de la tarjeta SD.
- *REGISTRO*: Días de registro desde el inicio o el último formateo.
- *EVENTOS*: Número de eventos de tensión detectados desde el incio o el último formateo.
- *LIBRE*: Porcentaje de memoria libre.
- *ESTRDO*: Estado de la memoria:
 - a) *5D DK*: La tarjeta funciona correctamente.
 - b) *NO 5D*: No hay ninguna tarjeta insertada.
 - c) PROT ESCR: La tarjeta está protegida contra escritura.
 - d) *ERROR*: La tarjeta SD tiene un error y se debe formatear.

Si se presenta un error de tarjeta es aconsejable formatearla. Si después de formatear la tarjeta SD persiste el error, debe asegurarse de que el formato es SD FAT16 y de capacidad inferior o igual a 2Gb. Otro formato o mayor capacidad no funcionará. Si persiste el error debe sustituir la tarjeta de memoria.

4.7.5.3. Iconos de tarjeta de expansión

Estado de la memoria SD correcto.

⁵⁰ Estado de la memoria SD no correcto.

4.7.5.4. Características de la tarjeta SD

TARJETA SD	
Tipo de tarjeta	SD
Capacidad máxima	2 Gb
Formato	FAT 16

4.7.6 - TARJETA 4 SALIDAS ± 5MA Y 4 SALIDAS ESTÁTICAS

Leer apartado 4.7.0 Inserción de tarjetas de expansión.

4.7.6.1. Configuración de la tarjeta de salidas analógicas ± 5mA

Para acceder a la configuración de la tarjeta de 4 salidas analógicas y 4 salidas transistor, entrar en menú de configuración (*FIENU ---> CONFIG.*) y seleccionar la posición donde está insertada la tarjeta, en el menú *TARJETR5*. Pulsar *SET* para entrar en el menú de la tarjeta.

Menu Medida	Com. Tarjetas
Medida Principal	Tarjeta 1
V.media	230 Tar jeta 2 Tar jeta 3
P.total	1 72.9 05⊮
S.total	172.905 KVA
PF.media	0.999
Frec.	50.00 Hz
INFO MAX	MIN UDO6

Para acceder a los parámetros de configuración de la tarjeta debe pulsar la tecla *EDIT* (F4). Seleccionar la salida analógica deseada y pulsar *SET* para entrar en modo edición.

Menu Medida Tarjetas Tarjeta 3	Com. Tarjetas
A/D OUT 01	001
	001
Escala	0-20mA
Cero	00000.0
Fondo Esc.	01000.0
IN PROX	EDIT &UD&G

4.7.6.2. Configuración de las salidas analógicas ± 5mA

La pantalla de configuración de las salidas analógicas de la tarjeta es como muestra la figura:

Menu Medida	Com. Tarjet	as
Tarjetas Tarjeta 3		
A/D 001 01		
Cód. Var.		001
Val-5mA		00000
Val+5mA		00000
IN PROX	EDIT	∕≋u®⊗6

Los parámetros de configuración de las salidas analógicas son:

- COD.VAR:Código de la variable eléctrica instantánea que se desea asignar a la salida
(ver capítulo 8.3 Mapa de memoria Modbus para ver los códigos de todas las
variables). No se permite código de energía.
- *VRL -5 ITR*: Selección del valor inferior de la escala para la salida de -5 mA.
- *VRL* +5 *IR*: Selección del valor del fondo de escala para la ssalida de 5 mA.

Las teclas de función nos muestran las siguientes opciones en el modo de edición:

- *ESE*: Salir de la pantalla actual sin salvar los cambios.
- 0K: Confirma y graba los cambios realizados.

Las diferentes teclas que aparecen en esta pantalla son:

- *PRDX*: Incrementa el número de salida hasta un máximo de 4 (*R/D DUT D4*). Pulsando nuevamente retorna a la salida 01 (*R/D DUT D1*).
- *DIG*: Desde cualquier pantalla, pulsar esta tecla para ir a pantalla de configuración de las alarmas. (Apartado 4.7.6.3 Configuración de las alarmas)
- *EDIT*: Pulsar para acceder al menú de edición. Con las flechas de desplazamiento se selecciona el parámetro que se desea modificar (en negrita). Entrar pulsando *SET*.

4.7.6.3. Configuración de las alarmas

Cuando se accede a la configuración de las tarjetas, se muestra el siguiente menú de la alarma 01.

- *COD. VRR:* El código introducido en esta variable puede ser de una variable instantánea o de energía a la que se asigna una salida de impulsos y un peso para cada impulso.
- MÁXIMD: Si se ha seleccionado una variable instantánea se debe configurar el valor máximo de la variable eléctrica. Debe entenderse como alarma de valor máximo.
 Si se ha seleccionado variable de energía, se debe indicar el peso en W·h que tiene cada impulso.
- *Ejemplo:* Si se introduce *DDD.D1D*, la alarma se activará cada 10 W•h. Se genera un impulso cada 10 W•h cuando la variable seleccionada es de energía.

ININD: Si se ha seleccionado una variable instantánea, debe configurar el valor mínimo de la variable eléctrica instantánea. Debe entenderse como alarma de valor mínimo.
 Si se ha seleccionado una variable energía, este campo no es necesario configurarlo.

RETARD. DN: Si se ha seleccionado una variable instantánea, este campo corresponde al tiempo mínimo en segundos que debe cumplirse la condición, para que se active la alarma.

Ejemplo: si se programa el valor 000010, la alarma se activará transcurridos 10 s.

Si se ha seleccionado una variable de energía, este valor corresponde al parámetro de tiempo ON. Es el número de intervalos de 10 ms que estará activada la salida para generar el impulso.

Ejemplo: si se programa el valor *DDDD3D*, la alarma se activará durante 300 ms.

RETARD. DFF: Si se ha seleccionado una variable instantánea, este valor corresponde al tiempo mínimo en segundos que se debe cumplir la condición, para que se desactive la alarma.

Ejemplo: si se programa el valor 000010, la alarma se desactivará transcurridos 10 seg.

Si se ha seleccionado una variable de energía, éste valor corresponde al parámetro de tiempo OFF. Es el número de intervalos de 10 ms que estará desactivada la alarma para generar el impulso.

Ejemplo: si se programa el valor *DDDD3D*, la alarma se desactivará durante 300 ms para generar el tiempo OFF del impulso.

Para acceder a la configuración de la alarma 2 y sucesivas, se debe presionar la tecla *PRDX*. (F2). De este modo se accede a las pantallas de configuración de todas las alarmas hasta un máximo de 16.

4.7.6.4. Configuración de salidas transistor

En esta pantalla se configuran las ecuaciones de las alarmas que se aplican para activar las salidas del equipo. Es posible configurar ecuaciones con funciones AND (*) y/o OR (+) entre una o varias de las 16 alarmas configuradas previamente (ver apartado 4.7.6.3 Configuración de alarmas), para activar cada una de las 4 salidas transistor del equipo.

Para modificar los parámetros de la configuración de la tarjeta, se debe pulsar la tecla *EDIT* (F4). Seleccionar la salida que se desea configurar y pulsar *SET* para entrar en edición.

Menu	Medida	Com.	Tar je ta	IS
Tarjetas Ta	rjeta 1			
OUT 01	00	*00*00	*00*00*	00*00*00
0UT 02	00	*00*00	*00*00*	00*00*00
0UT 03	00	*00*00	*00*00*	00*00*00
0UT 04	00	*00*00*	*00*00*	00*00*00
		ESC	0K	8U906

ATENCIÓN: El valor 00 en la ecuación de activación de las salidas, significan que no debe hacer nada, por lo que sólo se deberían encontrar al final de la ecuación. De encontrarse al principio, el **CVMk2** no realizará el cálculo ni la activación de la salida correspondiente

4.7.6.5. Conexionado salidas.

El conexionado de las entradas y salidas de la tarjeta según se muestra en el esquema:

	S	SA		DA	١S	A		
1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0
	1- (co	MU	IN				
	2- Salida Analogica 1							
	4- Salida Analogica 2							
	5- COMUN							
	6- Salida Analogica 3							
	7- COMUN 8- Salida Analogica 4							
	9-	No	se	us	a	og	ICa	4

SALIDAS T. 1 2 3 4 5 6 7 8 9 0 0 0 0 0 0 0 0 0 0 1- COMUN 2- COMUN 3- COMUN 4- COMUN 5- COMUN 6- Salida transistor 1 7- Salida transistor 2 8- Salida transistor 3

Un ejemplo de conexionado de las salidas de la tarjeta es como se muestra en el esquema:

4.7.6.6. Características de la tarjeta

CARACTERÍSTICA	VALOR	UNIDAD
SALIDAS ANALÓGICAS.	·	
Margen nominal de la salida	± 5	mA
Linealidad	1	%
Margen de resistencia de carga	1.500	Ω
Puntos del rango de salida	4.000	
SALIDA ESTÁTICA		
Tensión nominal	150 / 250	VDC / VAC
Corriente nominal	< 100	mA
Corriente máxima t=10ms	< 150	mA
Potencia máxima de disipación	0,8	W
Máxima Rov	25	Ω
CONEXIONADO		
Sección en conductor (Cu)	0,051 (AWG 3018)	mm ²
Par de apriete del borne	0,3	Nm
MECÁNICA		
Protección bornes	IP 20	

4.7.7 - TARJETA COMUNICACIONES PROFIBUS

Leer apartado 4.7.0 Inserción de tarjetas de expansión.

4.7.7.1. Configuración de la tarjeta Profibus

Esta tarjeta no tiene ningún parámetro de configuración por set-up ya que el número de periférico se configura con los selectores (ver el apartado 4.7.7.3).

Para acceder a la configuración de la tarjeta de comunicaciones profibus, entrar en menú de configuración (*FIENU ---> EUNFIG.*) y seleccionar la posición (*) donde está insertada la tarjeta, en el menú *TARJETRS*. Pulsar *SET* para entrar en el menú de la tarjeta.

(*) Varia entre 1, 2 ó 3, dependiendo de la posición donde esté insertada la tarjeta.

Menu	Medida	Com.	Tar je tas	
Medida P	rincipal		Tar je ta	1
V.media		230	Tarjeta Tarjeta	2 3
P.total		172.	905 ki	į
S.total		172.	905 kV	/A
PF.medi	ia	0.	999	
Frec.		50).00 Hz	2
INFO	MAX	MIN		บ๏⊗ฅ

Accediendo al menú de configuración se visualiza el mensaje: TRRJ. OK o TRRJ. NOK.

4.7.7.2. Visualización de parámetros de la tarjeta Profibus

Para acceder a los parámetros que muestra el CVMk2 con respecto a la tarjeta de comunicaciones Profibus, debe acceder al *FIENU --> TARJETAS --> TARJETA X*.*

(*) Varia entre 1, 2 ó 3, dependiendo de la posición donde esté insertada la tarjeta.

76

La pantalla muestra los mensajes:

Num. Perif *0* Estado Bus *RCTIVO / INRCTIVO*.

El número de periférico por defecto es *D*, pero cambia al iniciarse las comunicaciones al configurado por el usuario según los selectores (Apartado 4.7.7.3).

El estado del bus, nos indica si está activo o inactivo.

4.7.7.3. Configuración de las comunicaciones

Para configurar el número de periférico en la tarjeta profibus se deben usar los selectores de color azul de la tarjeta. Los selectores se identifican con HI el que corresponde a la parte alta del valor en hexadecimal y LO el que corresponde a la parte baja. Ver ejemplo de conversión en la siguiente figura:

Las velocidades que soporta la tarjeta de comunicaciones son las siguientes:

- 19,2 kbs	- 1500 kbs
- 93,75 kbs	- 3000 kbs
- 187,5 kbs	- 6000 kbs
- 500 kbs	- 12000 kbs

🔳 CIRCUTOR

4.7.7.4. Leds indicativos de la tarjeta Profibus

La tarjeta Profibus tiene 2 leds indicativos del estado en el que se encuentra tanto la tarjeta profibus, como el bus de comunicaciones.

Los leds están encendidos para indicar algún tipo de error tanto en la tarjeta como en el bus de comunicaciones profibus.

Las combinaciones de los posibles estados de los leds y su significado se muestra en la figura adjunta. Se puede ver que el led encendido "*On*" indica algún tipo de error, mientras que apagado "*Off*" indica un funcionamiento correcto del sistema.

4.7.7.5. Conector Profibus DP (DB-9)

Los pines del DB-9 tienen la siguiente configuración:

- 1. Malla.
- 2. -.
- 3. "B" Señal profibus entrada / salida no reversible.
- 4. -.
- 5. "M5" GND. Potencial de referencia.
- 6. "P5" Tensión alimentación 5V.
- 7. -.
- 8. "A" Señal profibus entrada / salida reversible.
- 9. -.

4.7.7.6. Modulos GSD Profibus.

Los módulos GSD están configurados según la tabla adjunta. La tabla indica el número del módulo, el contenido (variables) y el tamaño total del módulo.

MOD	PARAMETROS	BYTE	TAMAÑO
	Tensiones simples	12	
	Corrientes de fase	12	
1	Tensiones compuestas	12	52
	Factor de potencia	12	
	Frecuencia	4	
2	Potencias	48	48
	Valores promedio	12	
3	Valores de neutro	8	44
	Valores trifásicos	24	
4	Energía actual sin tarificación	48	48
5	THD V / I	32	32
6	THD odd / even	64	64
7	Deseq / Asimetria / Flicker	44	44
8	Armónicos impares Tensión (15º)	72	72
9	Armónicos impares Corriente (15°)	72	72
10	E. digitales 1 / E. Analogicas 2	64	64
11	E. digitales 2 / E. Analogicas 3	64	64
12	E. digitales 3 / E. Analogicas 1	64	64
13	Cos φ	12	12

Las limitaciones del protocolo Profibus a la hora de cargar los módulos son:

- Máximo 4 módulos.
- Tamaño máximo total 244 bytes.

5. OTRAS CONFIGURACIONES DEL SISTEMA

5.1. PREFERENCIAS

5.1.1 PANTALLA

Para configurar las preferencias de visualización de la pantalla se debe ir a *SISTEMR* dentro de *MENU*. Dentro de *SISTEMR*, desplegar el menu de *PREFERENCIRS* y seleccionar *PRINTRLLR*.

Menu Preferen Útiles	Módulos
Medida ^{ntalla}	
Calidad Tariotac	~~
Config. raste	60
Sistema	
	no
Ilumina	ON
Irainina.	
	- ~ .
Idioma	Espanol

Para modificar los valores actuales, pulsar la tecla *EDIT* (F4). El cursor se coloca en la primera línea de parámetros. Con las flechas arriba/abajo, se desplaza el cursor hasta el parámetro deseado. Pulsar *SET* para entrar en configuración del valor deseado.

Con las flechas izquierda/derecha, se cambia de dígito y con las flechas arriba/abajo, se incrementa/decrementa el valor del dígito donde se encuentra el cursor.

Para grabar los parámetros modificados, debe pulsar la tecla *SET* y posteriormente DK (F4) antes de salir. En caso de no desear grabar los cambios, pulsar *ESE* (F3).

Los parámetros que se pueden modificar en esta pantalla son:

- *CDNTRRSTE*: Es posible variar el contraste de los dígitos sobre la pantalla y adecuarlo a la luminosidad que exista en el lugar de la instalación. Los valores que se pueden introducir pueden oscilar desde *DD* a *9D*.
- *LCD OFF*: Es posible seleccionar entre *5I* o *ND*. Si selecciona *5I*, se activa la desconexión de la pantalla para ahorrar energía. El tiempo de desconexión de la pantalla se configura automáticamente a 5 minutos.
- ILUININA:
 Introducir el tiempo (en segundos) deseado para que la retroiluminación de la pantalla permanezca activa. Seleccionar entre valores 10, 90, 180. Se puede seleccionar 011 u 0FF.

 Si selecciona 011 activa permanentemente la retroilumincación y si selecciona 0FF la desactiva permenentemente.
- IDIDI^A: Indicar el idioma que se desea en las pantallas y en los menus del equipo. Actualmente es posible seleccionar entre Español, Inglés, Francés y Alemán.

Para grabar los parámetros modificados, debe pulsar la tecla 5ET y posteriormente DK (F4) antes de salir. En caso de no desear grabar los cambios, pulsar E5E (F3).

5.1.2 RELOJ / TEMPERATURA

Para configurar el reloj interno del equipo debe ir a *SISTEMR* dentro de *MENU*. Dentro de *SISTEMR*, desplegar *PREFERENCIRS* y seleccionar *RELOJ*.

Menu Preferen. Ú	Itiles Módulos
Preferen. Re <mark>Pantalla</mark> Reloj	
Hora Seguridad	10:30:25
Fecha	19/04/06
_	
Temp.	

Para modificar los valores actuales, pulsar la tecla *EDIT* (F4). El cursor se coloca el la primera línea de parámetros. Con las flechas arriba/abajo, se desplaza el cursor hasta el parámetro deseado. Pulsar *SET* para entrar en modo edición del valor deseado.

Con las flechas izquierda/derecha, se cambia de dígito y con las flechas arriba/abajo, se incrementa/decrementa el valor del dígito donde se encuentra el cursor.

🔳 CIRCUTOR

Los parámetros que se pueden modificar en esta pantalla son:

HORR: Introducir la hora local en el equipo.

FECHR: Introducir la fecha actual en el equipo con el formato: DIA / MES / AÑO.

TEMPERATURA: Seleccionar la unidad en que se desea ver representada la temperatura. Es posible seleccionar entre °*L* (Celsius) o °*F* (Farenheit).

Para grabar los parámetros modificados, debe pulsar la tecla 5ET y posteriormente DK (F4) antes de salir. En caso de no desear grabar los cambios, pulsar ESE (F3).

ATENCIÓN: El CVMk2 queda configurado con la hora local y realiza la grabación de eventos con esa fecha y hora. Cuando el equipo se comunica con Power Studio, el software cambia la hora local por hora UTC

5.1.3 SEGURIDAD

Para introducir una contraseña de seguridad que inhablilita el menú de configuración del equipo debe ir a *SISTEMR* dentro de *MENU*. Dentro de *SISTEMR*, desplegar el menu de *PREFERENCIRS* y seleccionar *SEGURIDRD*.

Menu Preferen. Útiles	Módulos
Bloqueen	no
Contraseña	0000
Nueva	0000
Repetir	0000
	 Т.

Para modificar los valores actuales, pulsar la tecla *EDIT* (F4). El cursor se coloca en la primera línea de parámetros. Con las flechas arriba/abajo, se desplaza el cursor hasta el parámetro deseado. Pulsar *SET* para entrar en configuración del valor deseado.

Con las flechas izquierda/derecha, se cambia de dígito y con las flechas arriba/abajo, se incrementa/decrementa el valor del dígito donde se encuentra el cursor.

Los parámetros que se pueden modificar en esta pantalla son:

BLOQUERR: Seleccionar si quere activar la contraseña (51) o desactivarla (ND).

- *CDNTRRSEÑR*: Introducir la contraseña que tenga el equipo para poder realizar cambios (por defecto *1234*), La nueva contraseña debe ser un número de cuatro dígitos desde el *0001* al *3999*.
- NUEVA: Introducir la contraseña nueva para el equipo. La contraseña debe ser un número de cuatro dígitos desde el 0001 al 9999.
- *REPETIR*: Introducir la contraseña nuevamente para confirmarla.

Para grabar los parámetros modificados, debe pulsar la tecla *SET* y posteriormente DK (F4) antes de salir. En caso de no desear grabar los cambios, pulsar *ESE* (F3).

ATENCIÓN: Cambiar la contraseña, supone dejar la pantalla inhabilitada para el acceso a los menús de configuración del equipo.

5.2. ÚTILES

5.2.1 EQUIPO

Para cambiar los parámetros de configuración de comunicaciones de la pantalla con el/los módulos conectados, debe ir a *SISTEMR* dentro de *MENU*. Dentro de *SISTEMR*, desplegar el menu de *UTILES* y seleccionar *EQUIPD*.

Menu Preferen. <mark>Útiles</mark> Útiles Equipo <mark>Equipo</mark>	Módulos
Reset	no
Actualizar	no
Baud pant.	57600
	ЕDIT Тю%б

Para modificar los valores actuales, pulsar la tecla *EDIT* (F4). El cursor se coloca el la primera línea de parámetros. Con las flechas arriba/abajo, se desplaza el cursor hasta el parámetro deseado. Pulsar *SET* para entrar en edición del valor deseado.

ATENCIÓN: Cambiar la velocidad de comunicación de la pantalla puede provocar la pérdida de comunicación con el/los módulo/s que no estén conectados a la pantalla en el momento del cambio.

Con las flechas izquierda/derecha, se cambia de dígito y con las flechas arriba/abajo, se incrementa/decrementa el valor del dígito donde se encuentra el cursor.

Los parámetros que se permite modificar en esta pantalla son:

- *RESET*: Seleccionar 5/ para reiniciar la pantalla e iniciar la búsqueda automática de los módulos conectados.
- RETURLIZER: Seleccionar 5/ para dejar la pantalla en modo de espera de recibir la actualización de firmware por el puerto COM1 (display) del equipo de medida.
- BRUD PRINT: Por defecto 57600. Es aconsejable no cambiar este parámetro ya que es posible perder la comunicación con el/los módulo/s que no estén conectados a la pantalla.

En casos en los que la pantalla indique error de comunicaciones con el/los módulo/s, es aconsejable revisar la velocidad de comunicaciones entre la pantalla y los módulos. En distancias excesivamente largas, puede ser necesario cambiar la velocidad entre la pantalla y los módulos de medida.

ATENCIÓN: Antes de cambiar la velocidad, asegurarse que todos los módulos están conectados y funcionando. En los módulos que no estén conectados cuando se modifique la velocidad de la pantalla, se deberá cambiar éste parámetro de forma individual.

Para grabar los parámetros modificados, debe pulsar la tecla 5ET y posteriormente DK (F4) antes de salir. En caso de no desear grabar los cambios, pulsar E5E (F3).

5.3. MÓDULOS

La pantalla del **CVMk2** reconoce automáticamente los módulos que tiene conectados. Para iniciar la detección de los módulos, debe reiniciarse la pantalla. Se puede reiniciar la pantalla desconectando la alimentación de la misma (desconectando el conector RJ-45 de comunicaciones y alimentación de la pantalla) o realizando un reset de la pantalla. Para ello debe entrar en el menú *EQUIPO* dentro de la opción *UTILE5*. (ver capitulo 5.2.1 de este manual) y seleccionar *YE5* en la opción *RESET* y confirmar con la tecla *DK*.

5.3.1 LISTA

La pantalla del **CVMk2** genera un listado con los números de serie de los equipos que detecta al reiniciarse. Este listado será siempre el mismo si no se introducen equipos nuevos dentro de BUS de comunicaciones del display identificado con COM1 en la etiqueta.

A los módulos detectados por la pantalla se les asigna un número de periférico (*NUII.PER*) que es informativo. Éste número se genera automáticamente y va desde el 1 al 32.

Para cambiar el módulo a visualizar, debe ir a *SISTEMR* dentro de *MENU*. Dentro de *SISTEMR*, se debe desplegar el menú *MODULOS* y seleccionar *LISTR* y confirmar con la tecla *SET*.

. Ú1	Útile	s	Módul	ÓS		
			Lista			
CVI	VMk2	$2_0($	Setup		5	i
CVI	VMk2	> 00	002			0
~11		0				•
CVI	VMk2	2_00)03		n	0
CVI	VML	> 00	004			
	TINC		01			U
CVI	VMk2	2_00)05		n	0
CVI	VML	> 00	06			
CTI	1116.6		~~~			0
CVI	VMk2	2_00)07		n	0
CVI	ML		108		-	-
			700		- DO	
		SE	EL		100	

Para visualizar otro módulo de medida se debe pulsar la tecla *5EL* (F4) y entrar en el listado de módulos conectados. El cursor se coloca en la primera línea, que corresponde con el primer módulo configurado en la lista.

Con las flechas arriba/abajo, se desplaza el cursor hasta el módulo deseado. Pulsar 5ET para entrar en el valor deseado.

El listado que aparece en pantalla, corresponde a todos los módulos de medida que se han configurado y se han dado de alta en la pantalla. El listado muestra los siguientes parámeros.

D123456789: Corresponde al número de serie del módulo detectado por la pantalla.

RBCDEFGHIJ: Corresponde al nombre que tiene configurado este módulo.

SI/ND: Nos indica el módulo seleccionado para visualizarse por la pantalla.

En la parte superior derecha de la pantalla, se visualiza el nombre del módulo seleccionado. Si se selecciona otro módulo, el nombre cambia para indicarnos en todo momento a qué módulo de medida corresponden los valores que están mostrando.

Para visualizar los parámetros de otro módulo de la lista, debe seleccionar el módulo desplazándose con las flechas, cuando se encuentra el cursor sobre el módulo deseado, pulsar *SEL* (F4) para poder cambiar la opción del menú a *5I* y después confirmar con la tecla *DK*.

5.3.2 SETUP

Para cambiar los parámetros de configuración de los módulos, debe ir a *515TEMR* dentro de *MENU*. Dentro del menu *515TEMR*, desplegar el menu de *MODULOS* y seleccionar *5ETUP*. y confirmar con la tecla *5ET*.

Menu Preferen. Médulos Setup	Útiles Módulos
Nombre Mod	CVMk2_0001
S/N Modulo	1234567801
Núm. Perif	01
PROX	EDIT UDS

Para modificar los valores actuales, pulsar la tecla *EDIT* (F4). El cursor se coloca en la primera línea de parámetros. Con las flechas arriba/abajo, se desplaza el cursor hasta el parámetro deseado y pulsar *SET* para entrar en edición.

Con las flechas izquierda/derecha, se cambia de dígito y con las flechas arriba/abajo se incrementa/decrementa el valor del dígito donde se encuentra el cursor.

Los parámetros que puede visualizar en esta pantalla son:

- NOMBRE MOD: Nombre que desea darle al módulo de medida o nombre que ya tiene. Este nombre se visualiza en la parte superior derecha de la pantalla, cuando se visualizan los parámetros de este módulo.
- 5/N MODULO: Indica el número de serie del módulo. Este número no es editable, sólo informativo.
- NUIT.PERIF:Por defecto es 1 cuando sólo hay conectado un módulo de medida. Este
número se genera automáticamente y no es editable, sólo informativo. Además
indica el orden en el que aparecen los módulos en el listado de la pantalla
LISTR del apartado 5.3.1.

Para modificar otros módulos, en caso de tener conectados más de uno, debe pulsar la tecla *PRDX*, (F1) y desplazarse al siguiente módulo en la lista para poder editar los nombres sin necesidad de salir de la pantalla de edición.

6. PANTALLAS DE VISUALIZACIÓN

6.1. MEDIDA

6.1.1 PRINCIPAL

Para acceder a la pantalla principal de visualización de parámetros instantáneos, debe ir a ITEDIDR dentro de ITENU.

Menu Medida	Demanda Energía	
Medida Principal		
V.media	2300.1 v	
P.total	172.620	
S.total	172.620 kWA	
PF.media	0.999	
Frec.	50.00 Hz	
INF0 MAX	MIN	ฃ⊚⊗ն

En la pantalla principal de medida, aparecen las siguientes variables:

V.ITEDIR: Valor medio de las tres tensiones fase-neutro.

P.TOTRL: Valor de la suma de la potencia activa instantánea de las tres fases.

5.TOTRL: Valor de la suma de la potencia aparente instantánea de las tres fases.

PF. MEDIR: Factor de potencia trifásico.

FREC: Frecuencia medida de la fase 1.

6.1.1.1. Información del sistema

Las teclas de función permiten acceder a la siguiente información del sistema:

INFO: (F1) Información del sistema. La primera ventana informa de los parámetros que se han configurado en la pantalla y en la memoria.

Version Display	D-CVMk2- 0.04	
N/S Display	01234567891234	
Idioma	Español	
Módulos de Medida	23	
Bloquear	no	
LCD OFF	no	
Ilumina.	ON	
Fecha	19/04/06	
Hora	10:30:25	
Temperatura	28.5	
Días desde reset	2.00	
Días funcionando	0.10	

La información que aparece en esta pantalla es:

TEXTO	VALOR	DESCRIPCIÓN
Versión de Display	D-CVMk2-xxx	Versión de firmware grabada en la pantalla.
N/S Display	*****	Número de serie de la pantalla.
Idioma	Español	Idioma seleccionado.
Módulos de Medida	01	Número de módulos detectados por la pantalla.
Bloquear	NO	Pantalla bloqueada por contraseña.
LDC OFF	NO	Pantalla se apaga con la iluminación.
Ilumina.	ON	Tiempo de retroiluminación seleccionado.
Fecha	**/**/**	Fecha configurada en el módulo.
Hora	**.**	Hora configurada en el módulo.
Temperatura	** *	Temperatura interna del modulo de medida.
Días desde Reset	* **	Días desde que se realizó el último reset.
Días funcionando	* **	Días totales de funcionamiento del equipo.

Es importante consultar esta pantalla, puesto que muestra un resumen de la configuración de la pantalla. De este modo no debe desplazarse por los menús de configuración para verificar la configuración del equipo.

- INAXIMO5: (F2) Visualiza los parámetros máximos almacenados en la memoria del equipo desde la última vez que se resetearon los valores máximos, o desde que se puso el equipo en funcionamento. (Ver apartado 6.1.1.2 Tecla de máximos)

Los menús que parecen sobre las teclas teclas de función son:

- *EXIT* : (F1) Para salir de las pantallas de información del sistema. Pulsando esta tecla vuelve a la pantalla principal de medida desde la que ha accedido.
- *IIED* : (F2) Información del sistema.

Muestra la pantalla de configuración del módulo de medida.

Número de medida	01/23	
Versión medida	CVMK2-ITF-405- 0.05	
Nombre medida	CVMk2_0001	
N/S medida	1234567801	
Prim. U	000001	
Sec. U	001	
Prim. I	01000	
Prim. In	00100	
Sec. I	05	
Tarjeta 1	EXP-DIG-81/40 1.0	
Tarjeta 2	EXP-ANALOG-81/40 1.0	
Tarjeta 3	EXP-SD/ETHERNET 1.0	

La información que muestra la pantalla de información del sistema de medida es:

TEXTO	VALOR	DESCRIPCIÓN
Número de medida	01 / 01	Número del módulo / módulos totales conectados
Versión medida	CVMk2-ITF-405-***	modelo de módulo y versión de firmware del mismo.
Nombre medida	GENERAL	Nombre editado para el módulo de medida.
N/S medida	****	Número de serie del módulo.
Prim. U	0000001	Primario de trafo de tensión programado.
Sec. U	001	Secundario de trafo de tensión programado.
Prim. I	00500	Primario de trafo de corriente programado.
Prim. In	00005	Primario de trafo de corriente de Neutro programado
Sec. I	5	Secundario de trafo de corriente programado.
Tarjeta 1	NONE*******-	No se detecta ninguna tarjeta en el slot 1.
Tarjeta 2	EXP-DIG-8I/4O 1.0	Detectada tarjeta de entradas digitales/salidas relé.
Tarjeta 3	EX-SD/ETHERNET 1.0	Detectada tarjeta de memoria SD y ethernet.

En esta pantalla, los menús que parecen sobre las teclas teclas de función son:

- *EXIT* : (F1) Para salir de las pantallas de información del sistema. Pulsando esta tecla vuelve a la pantalla principal de medida desde la que ha accedido.
- *DISP* : (F2) Pulsando esta tecla vuelve a la pantalla anterior donde se muestran los parámetros de configuración de la pantalla.

6.1.1.2. Máximos

En la pantalla se muestan los valores máximos con la fecha y la hora en que se registraron de las variables que se muestran en valor instantáneo.

Menu Medida Medida Principal	Demanda Energía	MAX
V.media	2302.0	19/04/06 10:30:25
P.total	172.905	19/04/06 10:30:25
S.total	172.905 kWA	19/04/06 10:30:25
PF.media	0.999	19/04/06 10:30:25
Frec.	50.00 Hz	19/04/06 10:30:25
INF0 INST	MIN 🔄 🔄	บ๏⊗ฅ

En la pantalla de máximos, se muestran las siguientes variables:

V.TEDIR: Valor máximo de la media de las tres tensiones de fase.

- *P.TOTRL*: Valor máximo de la suma de la potencias instantánea de las tres fases.
- 5.TOTRL: Valor máximo de la suma de la potencias aparentes instantáneas de las tres fases.
- *PF. ITEDIR*: Valor máximo de la media del factor de potencia trifásico.
- FREC: Frecuencia máxima de la línea (frecuencia máxima de la fase 1).

Cuando se visualizan los valores máximos, se indica en cada uno de ellos, la hora exacta y la fecha de cuando fueron registrados. Éstos valores máximos están referidos desde la fecha en la que se conectó el equipo por primera vez . En caso de haber realizado algún borrado de los valores máximos, desde la fecha y hora en la que se realizó el último borrado.

En esta pantalla, los menús que parecen sobre las teclas teclas de función son:

- *INFD*: (F1) Pulsando esta tecla se retorna a la pantalla de información del sistema (apartado 6.1.1.1 Información del sistema).
- *IN5T*: (F2) Pulsando esta tecla se retorna a la pantalla donde se visualizan los valores instantáneos de las variables. (Ver apartado 6.1.1 Principal)
- ITIN: (F3) Para salir de la pantalla de valores máximos. Pulsando esta tecla se muestra la pantalla de valores mínimos almacenados (ver apartado 6.1.1.3).

6.1.1.3. Mínimos

Se muestran los valores mínimos de las variables que se visualizan en valor instantáneo, junto con la fecha y la hora en la que fueron registrados.

Menu Medida	Demanda Energía	
Medida Principal		
	0005 5	19/04/06
V modia	2296.5%	10.00.05
+.media	LL 20.01	10:30:25
	170 000	19/04/06
P.total	1/2.060	10.30.25
1.0000		10.00.20
	170 000	19/04/06
S.total		10:30:25
	A 000	19/04/06
PF.media	0.999	10:30:25
-	50.00.	19/04/06
Frec.	UU.UU Hz	10:30:25
INFO MAX	INST	Նածը

En la pantalla de mínimos, se muestran las siguientes variables:

- *V.fTEDIR*: Valor mínimo de la media de las tres tensiones de fase.
- *P.TOTRL*: Valor mínimo de la suma de la potencias instantánea de las tres fases.
- 5.TOTRL: Valor mínimo de la suma de la potencias aparentes instantáneas de las tres fases.
- PF. ITEDIR: Valor mínimo de la media del factor de potencia trifásico
- FREC: Frecuencia mínima de la línea (frecuencia mínima de la fase 1).

Cuando se muestran los valores mínimos, se indica en cada uno de ellos, la hora exacta y la fecha de cuando fueron registrados.

Éstos valores mínimos están referidos desde la fecha en la que se conectó el equipo. En caso de haber realizado algún borrado de los valores mínimos, los valores hacen referencia desde la fecha en que se realizó el último borrado.

En esta pantalla, los menús que parecen sobre las teclas teclas de función son:

- *INFD*: (F1) Pulsando esta tecla vuelve a la pantalla de información del sistema (apartado 6.1.1.1 Información del sistema).
- *IIRX*: (F2) Pulsando esta tecla se muestra la pantalla de valores máxi almacenados (ver apartado 6.1.1.2).
- *IN5T*: (F3) Pulsando esta tecla se vuelve a la pantalla de valores instantáneos de las variables desde la que accedió. (Ver apartado 6.1.1 Principal)

6.1.2 TENSIÓN FASE-NEUTRO

Se representan los valores de las tensiones simples, referenciadas al neutro, de cada una de las fases.

El menu inferior contiene las siguientes funciones:

- *INFD*: Pulsando esta tecla se muestra la pantalla de información del sistema (apartado 6.1.1.1 Información del sistema).
- Pulsando esta tecla se muestra la pantalla de valores máximos almacenados. En la pantalla, puede ver los valores máximos de cada variable que se han registrado, desde el último borrado, junto con la fecha y la hora del registro.
 Dentro de la pantalla *I*¹*RX*, aparece la opción *INST* para volver a la pantalla de valores instantáneos.
- Pulsando esta tecla se muestra la pantalla de valores mínimos almacenados. En la pantalla, se muestran los valores mínimos de cada variable que se han registrado, desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *I'll*, aparece la opción *l*N57 para volver a visualizar los valores instantáneos.

DNDR: Pulsando esta tecla se muestra en pantalla la forma de onda de la tensión entre las fases y el neutro.

6.1.2.1 Visualización de la forma de onda de tensión

En esta pantalla, se muestra la forma de onda de la tensión simple o fase-neutro. Dentro de la pantalla, puede utilizar las teclas de desplazamiento arriba/abajo para desplazarse por cada una de las fases L1, L2 ó L3.

Por defecto, al entrar en la pantalla, el cursor se encuentra sobre L1 y está activada. Para visualizar las fases debe colocar el cursor sobre la fase deseada y pulsar *SET*. Si la fase que selecciona está activada, pulsando *SET* la desactiva y deja de visualizarla.

De este modo puede llegar a visualizar las tres formas de onda de la línea trifásica simultáneamente. También puede agruparlas como desee.

En los cuadros situados a la derecha de la pantalla, que correponden a cada fase, se muestra el valor eficaz de la tensión simple de cada una de las fases

ATENCIÓN: El refresco de las pantallas gráficas de forma de onda y de fasores, es de un segundo. Si hay algun evento que dura menos de un segundo o éste no és cíclico, no se visualizará.

Las teclas que nos aparecen en el menu inferior son:

*Z*hx1 :Pulsando esta tecla, se realiza un zoom horizontal de la forma de onda que se muestra. Es un zoom cíclico con las opciones x1, x2, x4 y vuelve al inicio.

- *Z*vx1: Pulsando esta tecla, se realiza un zoom vertical de la forma de onda que está visualizando. Es un zoom cíclico con las opciones x1, x2, x4, x8 y vuelve al inicio.
- HDLD: Realiza una captura de la forma de onda que se esta visualizando.La teclaRUN, permite volver al modo contínuo de visualización de la forma de onda.
- FR5E: Muestra la pantalla gráfica de fasores. En la pantalla de fasores sólo muestra DRTD (F4) en el menú inferior. Pulsando DRTD, se vuelve a la pantalla de visualización numérica de valores instantáneos de las variables. (ver apartado 6.1.2)

6.1.2.2 Visualización de fasores de tensión

En esta pantalla, se muestran los fasores de una forma gráfica. También se muestra una tabla de los valores numéricos más representativos.

TEXTO	VALOR (P.E.)	DESCRIPCIÓN
L1	240.0	Valor RMS de VL1
L2	239.8	Valor RMS de VL2
L3	240.1	Valor RMS de VL3
FUND V1	230.2	Valor de la fundamental de la fase 1
FUND V2	230.0	Valor de la fundamental de la fase 2
FUND V3	230.4	Valor de la fundamental de la fase 3
Ø 1-2	120.4 °	Desfase angular entre fases 1 y 2
Ø 2-3	120.4 °	Desfase angular entre fases 2 y 3
Ø 3-1	119.2 °	Desfase angular entre fases 3 y 1
Frec.	50.14	Frecuencia de las fase 1

ATENCIÓN: Sólo desde la pantalla de visualización numérica, (apartado 6.1.2) es posible desplazarse por el menu superior con las flechas de desplazamiento lateral.

6.1.3 TENSIÓN ENTRE FASES

En esta pantalla, se representan los valores de las tensiones compuestas. Los valores de tensión entre las fases.

Menu	Medida Demanda Energía
Piedida	Tension 20 V T-T
Ø1-2	3975.6
	0077 F
Ø2−3	3977.5
62.1	3979.4
₩3-I	0777.4
N-GND	395.4
INFO	MAX MIN UD�6

En esta pantalla, los menús que parecen sobre las teclas teclas de función son:

- *INFD*: Pulsando esta tecla se muestra la pantalla de información del sistema (apartado 6.1.1.1 Información del sistema).
- *TIRX*: Pulsando esta tecla se muestra la pantalla de valores máximos almacenados. En la pantalla, se muestran los valores máximos de cada variable que se han registrado desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *l'IRX*, aparece la opción *ll'15T* para volver a la pantalla de valores instantáneos.

FIIN: Pulsando esta tecla se muestra la pantalla de valores mínimos almacenados. En la pantalla, se muestran los valores mínimos de cada variable que se han registrado, desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *l'IIN*, aparece la opción *INST* para volver a la pantalla de valores instantáneos.

6.1.4 CORRIENTE

En esta pantalla, se muestran los valores instantáneos de las corrientes de cada fase y neutro.

NOTA: La corriente de neutro es la medida por el **CVMk2** en caso de configurar y conectar un transformador de neutro. Si no se conecta ningun transformador, se puede programar para que la corriente de neutro sea calculada.

En esta pantalla se muestran los siguientes botones sobre las teclas de función:

- *INFD*: Pulsando esta tecla se muestra la pantalla de información del sistema (apartado 6.1.1.1 Información del sistema).
- *TRX*: Pulsando esta tecla se muestra la pantalla de valores máximos almacenados. En la pantalla, se muestran los valores máximos de cada variable que se han registrado, desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *l'IRX*, aparece la opción *INST* para volver a la pantalla de valores instantáneos.

Pulsando esta tecla se muestra la pantalla de valores mínimos almacenados. En la pantalla, se muestran los valores mínimos de cada variable que se han registrado, desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *l'III*, aparece la opción *II*157 para volver a la pantalla de valores instantáneos.

DNDR: Pulsando la tecla *DNDR*, se muestra la pantalla de la forma de onda de las corrientes de las fases.

6.1.4.1 Visualización de la forma de onda de corriente

En esta pantalla, se muestra la forma de onda de la corriente de las fases. Dentro de la pantalla, puede utilizar las teclas de desplazamiento arriba/abajo para seleccionar cada una de las fases L1, L2 ó L3, para seleccionarlas o deseleccionarlas.

Por defecto, al entrar en la pantalla, el cursor se encuentra sobre L1 y está activada. Para visualizar las otras fases, debe colocar el cursor sobre ella y pulsar *5ET*. Si la fase que selecciona está activada, pulsando *5ET* se desactiva.

De este modo pode llegar a visualizar las tres formas de onda de la línea trifásica simultáneamente. También puede agruparlas como desee.

Dentro de los cuadros situados a la derecha de la pantalla, que corresponden a cada fase, se muestra el valor eficaz de la corriente de cada una de las fases.

ATENCIÓN: El refresco de las pantallas gráficas de forma de onda y de fasores, es de un segundo. Si hay algun evento que dura menos de un segundo o éste no és cíclico, no se visualiza.

En esta pantalla, los menús que parecen sobre las teclas de función son:

- *Z*hx1: Realiza un zoom horizontal de la forma de onda que se muestra. Es un zoom cíclico con las opciones x1, x2, x4 y vuelve al inicio.
- *Z*vx1: Realiza un zoom vertical de la forma de onda que está visualizando. Es un zoom cíclico con las opciones x1, x2, x4, x8 y vuelve al inicio.

- *HDLD*: Realiza una captura de la forma de onda que se esta visualizando. La tecla *RUN*, permite volver al modo contínuo de visualización de la forma de onda.
- *FR5E*: Muestra la pantalla gráfica de fasores. En la pantalla de fasores sólo muestra *DRTD* (F4) en el menú inferior. Pulsando *DRTD*, se vuelve a la pantalla de visualización numérica de valores instantáneos de las variables. (ver apartado 6.1.4)

6.1.4.2 Visualización de fasores de corriente

En esta figura, se muestran los fasores de forma gráfica. También se muestra una tabla con los valores numéricos más representativos.

TEXTO	VALOR (P.E.)	DESCRIPCIÓN
L1	240.0	Valor eficaz de la fase 1
L2	239.8	Valor eficaz de la linea 2
L3	240.1	Valor eficaz de la linea 3
FUND I1	235.2	Valor de la fundamental de la fase 1
FUND I2	233.5	Valor de la fundamental de la fase 2
FUND 13	235.6	Valor de la fundamental de la fase 3
Ø 1-2	120.4 °	Desfase angular entre fases 1 y 2
Ø 2-3	120.4 °	Desfase angular entre fases 2 y 3
Ø 3-1	119.2 °	Desfase angular entre fases 3 y 1
Frec.	50.14	Frecuencia de las fases (fase 1)

ATENCIÓN: Sólo desde la pantalla de visualización numérica, (6.1.4) puede desplazarse por el menu superior con las flechas de desplazamiento lateral.

6.1.5 POTENCIAS

ADVERTENCIA: El cálculo de la potencia del CVMk2 está limitada según la fórmula:

 $(Prim V) \times (Prim I) < 45.000.000$

6.1.5.1 Potencia Activa

En esta figura, se muestran los valores instantáneos de las potencias activas de cada fase y la potencia activa trifásica (kW).

Menu Medida	Medida Demanda Energía Potencia» P. Activa
u	51.820
L2	53.020
L3	57.690 🖩
Total	172.905 🗤
INFO] MAX MIN Ư⊡⊗ɓ

En esta pantalla se muestran los siguientes botones sobre las teclas de función:

- *INFD*: Muestra la pantalla de información del sistema (apartado 6.1.1.1. Información del sistema).
- *IRX*: Muestra la pantalla de valores máximos almacenados. En la pantalla, se muestran los valores máximos de cada variable que se han registrado desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *l'IRX*, aparece la opción *ll'15T* para volver a la pantalla de valores instantáneos.

Muestra la pantalla de valores mínimos almacenados. En la pantalla, se muestran los valores mínimos de cada variable que se han registrado, desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *l'III*, aparece la opción *II*157 para volver a la pantalla de valores instantáneos.

6.1.5.2 Potencia Inductiva

En esta figura se muestran los valores instantáneos de las potencias inductivas de cada fase y la potencia inductiva trifásica (kVar).

En esta pantalla se muestran los siguientes botones sobre las teclas de función:

- *INFD*: Muestra la pantalla de información del sistema (apartado 6.1.1.1 Información del sistema).
- *IRX*: Muestra la pantalla de valores máximos almacenados. En la pantalla, se muestran los valores máximos de cada variable que se han registrado desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *l'IRX*, aparece la opción *ll'IST* para volver a la pantalla de valores instantáneos.

Muestra la pantalla de valores mínimos almacenados. En la pantalla, se muestran los valores mínimos de cada variable que se han registrado, desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *IIII*, aparece la opción *II*957 para volver a la pantalla de valores instantáneos.

6.1.5.3 Potencia Capacitiva

En esta figura se muestran los valores instantáneos de las potencias capacitivas de cada fase y la potencia capacitiva trifásica (kVar).

En esta pantalla se muestran los siguientes botones sobre las teclas de función:

- *INFD*: Muestra la pantalla de información del sistema (apartado 6.1.1.1 Información del sistema).
- *IRX*: Muestra la pantalla de valores máximos almacenados. En la pantalla, se muestran los valores máximos de cada variable que se han registrado desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *l'IRX*, aparece la opción *INST* para volver a la pantalla de valores instantáneos.

filli: Muestra la pantalla de valores mínimos almacenados. En la pantalla, se muestran los valores mínimos de cada variable que se han registrado, desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *l'III*, aparece la opción *IN5T* para volver a la pantalla de valores instantáneos.

6.1.5.4 Potencia Aparente

En esta pantalla, se muestran los valores instantáneos de las potencias aparente de cada fase y la potencia aparente trifásica (kVA).

Menu	Medida Demanda Energía
Medida	Potencia» P. Aparen
Ľ	57.295 KVA
L2	57.355 km
L3	57.410 KVA
Total	172.060 kWA
INFO] MIN Ŭ⊠⊗ 6

En esta pantalla se muestran los siguientes botones sobre las teclas de función:

- *INFD*: Muestra la pantalla de información del sistema (apartado 6.1.1.1 Información del sistema).
- IPRX: Muestra la pantalla de valores máximos almacenados. En la pantalla, se muestran los valores máximos de cada variable que se han registrado desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *I*¹*RX*, aparece la opción *I*¹*Y*57 para volver a la pantalla de valores instantáneos.

*I*IIN: Muestra la pantalla de valores mínimos almacenados. En la pantalla, se muestran los valores mínimos de cada variable que se han registrado, desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *[7]|N*, aparece la opción *IN57* para volver a la pantalla de valores instantáneos.

6.1.5.5 Potencia Total

En esta pantalla, se muestran los valores de las potencias trifásicas.

En esta pantalla se muestran los siguientes botones sobre las teclas de función:

- *INFD*: Muestra la pantalla de información del sistema (apartado 6.1.1.1 Información del sistema).
- *IRX*: Muestra la pantalla de valores máximos almacenados. En la pantalla, se muestran los valores máximos de cada variable que se han registrado desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *l'IRX*, aparece la opción *lN5T* para volver a la pantalla de valores instantáneos.

ITIN: Muestra la pantalla de valores mínimos almacenados. En la pantalla, se muestran los valores mínimos de cada variable que se han registrado, desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *l'III*, aparece la opción *II*¹⁵⁷ para volver a la pantalla de valores instantáneos.

6.1.6 FACTOR DE POTENCIA

En esta pantalla se muestran los valores instantáneos de factor de potencia de cada fase y el factor de potencia total.

Menu	Medida	Demanda Energía
Medida	Fac. Pot.	
u		0.899
L2		0.919
L3		0.999
Total		0.999
INFO	MAX	MIN 1000

En esta pantalla se muestran los siguientes botones sobre las teclas de función:

- *INFD*: Muestra la pantalla de información del sistema (apartado 6.1.1.1 Información del sistema).
- *TRX*: Muestra la pantalla de valores máximos almacenados. En la pantalla, se muestran los valores máximos de cada variable que se han registrado desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *l'IRX*, aparece la opción *INST* para volver a la pantalla de valores instantáneos.

filli: Muestra la pantalla de valores mínimos almacenados. En la pantalla, se muestran los valores mínimos de cada variable que se han registrado, desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *l'III*, aparece la opción *II*157 para volver a la pantalla de valores instantáneos.

6.1.7 COS φ

En esta pantalla, se muestran los valores instantáneos de cos ϕ de cada fase y cos ϕ total.

En esta pantalla se muestran los siguientes botones sobre las teclas de función:

- *INFD*: Muestra la pantalla de información del sistema (apartado 6.1.1.1 Información del sistema).
- *IRX*: Muestra la pantalla de valores máximos almacenados. En la pantalla, se muestran los valores máximos de cada variable que se han registrado desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *I*ÎRX, aparece la opción *I*NST para volver a la pantalla de valores instantáneos.

ITIN: Muestra la pantalla de valores mínimos almacenados. En la pantalla, se muestran los valores mínimos de cada variable que se han registrado, desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *ITIIY*, aparece la opción *IN5T* para volver a la pantalla de valores instantáneos.

FR5E :Muestra la pantalla gráfica de fasores. En la pantalla de fasores sólo se permite la opción *DRTD* (F4) en el menú inferior. Pulsando *DRTD*, se vuelve a la pantalla de visualización numérica de valores instantáneos de las variables. (ver apartado 6.1.6)

En esta pantalla se muestran los fasores de una forma gráfica y una tabla de los valores numéricos más representativos.

TEXTO	VALOR (P.E.)	DESCRIPCIÓN	
FUND V1	240.0	Valor de la fundamental de tensión de la fase 1	
FUND V2	239.8	Valor de la fundamental de tensión de la fase 2	
FUND V3	240.1	Valor de la fundamental de tensión de la fase 3	
FUND I1	235.2	Valor de la fundamental de corriente de la fase 1	
FUND 12	233.5	Valor de la fundamental de corriente de la fase 2	
FUND 13	235.6	Valor de la fundamental de corriente de la fase 3	
Ø V1-I2	120.4 °	Desfase angular entre tensión y corriente de la fase 1	
Ø V2-I3	120.4 °	Desfase angular entre tensión y corriente de la fase 2	
Ø V3-I1	119.2 °	Desfase angular entre tensión y corriente de la fase 3	
Frec.	50.14	Frecuencia de las fases (fase 1)	

6.2. DEMANDA

En el menu *DEMRNDR*, puede seleccionar la visualización de la *DEMRNDR* de la tarifa que desee de entre todas las que tenga configuradas.

Si no se ha configurado ninguna tarifa, por defecto, se trabaja sobre la tarifa 1.

En la pantalla de DEMRINDR, se muestran los siguientes parámetros en todas las tarifas.

- P. TOTRL: Potencia activa total de la tarifa.
- 5. TOTAL: Potencia aparente total de la tarifa.
- *II*: Intensidad de la fase 1.
- *l2*: Intensidad de la fase 2.
- *I3*: Intensidad de la fase 3.
- I ITEDIR: Media de las tres intensidades de las fases.

Menu	Medida Demanda Energía
Demanda Ta	arifa 1
P.total	613 . 412w
S.total	613.412 kWA
11	5961.177A
12	6429.927A
13	6429.927A
Imedia	6429.927A
INFO	MAX

En esta pantalla se muestran los siguientes botones sobre las teclas de función:

- *INFD*: Muestra la pantalla de información del sistema (apartado 6.1.1.1 Información del sistema).
- *IRX*: Muestra la pantalla de valores máximos almacenados. En la pantalla, se muestran los valores máximos de cada variable que se han registrado desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *IIRX*, aparece la opción *INST* para volver a la pantalla de valores instantáneos.

En la pantalla MAX, puede ver los valores máximos guardados de la demanda.

6.3. ENERGÍA

En el menu de energía dispone de las siguientes opciones:

- *RETURL*: Es la energía acumulada hasta la fecha. Dentro de la actual puede discriminar las tarifas o mostrar un contador totalizador de todas las tarifas.
- *MENSURL*: El **CVMk2**, almacena en memoria interna el cierre de la energía consumida durante el mes anterior. Esta energía guardada del mes anterior, también puede discriminarse en tarifas o mostrar el contador totalizador.
- RNURL: Del mismo modo que en mesual, el **CVMk2** guarda en memoria la energía consumida hasta el año anterior, discriminado por tarifas y en un contador totalizador.

La pantalla de presentación de datos de energía es igual para todas las opciones que muestra el menú de energía. Se muestran los valores en consumo y en generación, de todas las energías que mide el analizador.

6.3.1 ENERGÍA ACTUAL

Menu	Med	ida	Demanda	Energía	
Energía	Actual	>> To	tal		_
k₩h			00000	000 .028	kWh
kvarl	h		00000	000.004	kvarh
kvart	Ch		00000	0 00 .003	kvarh
kVAh			00000	000.028	kVAh
k₩h -	-		00000	000.000	kWh
kvarl	_h -		00000	000.000	kvarh
kvart	Ch –		00000	000.000	kvarh
kVAh	-		00000	000.000	kVAh
INFO					UD06

En la pantalla se muestan todas las energías acumuladas, en generación y en consumo. Puede seleccionar el total, con lo que se muestra el total de energía acumulada en todos los contadores o seleccionar cada tarifa por separado.

6.3.2 ENERGÍA MENSUAL

Menu	Medida	Demanda	Energía	
Energía A	ictual » To	tal		
k₩h		00000	000 .028	kWh
kvarLh	n in the second s	00000	000.004	kvarh
kvarCh	1	00000	000 .003	kvarh
kVAh		00000	000 .028	kVAh
k₩h -		00000	000.000	kWh
kvarLh	n —	00000	000.000	kvarh
kvarCh	n –	00000	000.000	kvarh
kVAh -		00000	000.000	kVAh
INFO				Մ⊵⊗ն

CVMk2 guarda el valor de energía acumulado hasta el último día del mes anterior. Ésta energía guardada queda en un contador totalizador, y en el parcial de todas las tarifas que se habían configurado.

6.3.3 ENERGÍA ANUAL

Menu	Medida	Demanda	Energía	
Energía	Actual » To	tal		
k₩h		00000	0 00 .028	kWh
kvarLl	n	00000	000.004	kvarh
kvarC	h	00000	000.003	kvarh
kVAh		00000	000 .028	kVAh
k₩h -		00000	000.000	kWh
kvarLl	n –	00000	000.000	kvarh
kvarCl	h -	00000	000. 000	kvarh
kVAh -	-	00000	000.000	kVAh
INFO				Մ⊠⊗ն

CVMk2 guarda el valor de energía acumulado hasta el año anterior. Ésta energía guardada, queda en un contador totalizador, y en el parcial de todas las tarifas que se habían configurado.

6.4. TARJETAS DE EXPANSIÓN

Para poder visualizar el estado de las entradas o salidas de las tarjetas de expansión, debe ir al menu *TRRJETR5* dentro de *ITENU*, seleccionar *TRRJETR5* y seleccionar entre las opciones del menu superior (tarjeta 1, tarjeta 2 ó tarjeta 3) dependiendo de la posición en la que está insertada la tarjeta que desea visualizar.

Menu Med	lida Demanda Energía
Medida ^{inci}	pal
Calidad Tarjetas	2297.6v
Config.	
Sistema	172.230₩
S.total	172.230 km
PF.media	0.999
Frec.	50.00 Hz
INFO MAX	K MIN UDOG

Si se selecciona una posición en la que no hay ninguna tarjeta insertada, o no la reconoce, muestra el mensaje *ND TRRJ*.

6.4.1 TARJETA 8 ENTRADAS / 8 SALIDAS DIGITALES

Si se selecciona una posición en la que se encuentra insertada una tarjeta de entradas / salidas digitales estáticas se muestra la siguiente pantalla.

Menu	Tarjeta 1 Tarjeta 2 Tarjeta	3
Tarjeta 1 Ta	irjeta 1	
IN 01	00000000	
IN 02	00000000	
IN 03	0000000	
IN 04	0000000	
IN 05	0000000	
IN 06	0000000	
IN 07	0000000	
IN 08	0000000	
INFO		Մ⊪⊗ն

En la figura se muestra el estado de las entradas digitales o el número de impulsos que ha recibido en cada una de las entradas, dependiendo de la configuración que tengan las entradas.

6.4.2 TARJETA 8 ENTRADAS / 4 SALIDAS RELÉ

Si se selecciona una posición en la que se encuentra insertada una tarjeta de entradas / salidas estáticas relé se muestra la siguiente pantalla.

Menu	Tarjeta 1 Tarjeta 2 Tarjeta 3	
Tarjeta 1 Ta	arjeta 1	
IN 01	00000000	
IN 02	0000000	
IN 03	0000000	
IN 04	0000000	
IN 05	0000000	
IN 06	0000000	
IN 07	0000000	
IN 08	0000000	
INFO		սթծը

En la figura se muestra el estado de las entradas digitales o el número de impulsos que ha recibido en cada una de las entradas, dependiendo de la configuración que tengan las entradas.

6.4.3 TARJETA 8 ENTRADAS / 4 SALIDAS ANALÓGICAS

Si se selecciona una posición en la que se encuentra insertada una tarjeta de entradas / salidas analógicas se muestra la siguiente pantalla.

Menu	Tar je ta	1 Tarjeta 2 Tarjeta	3
Tarjeta 3	Tarjeta 3		
AD IN	01	00000001	
AD IN	02	00000001	
AD IN	03	00000001	
AD IN	04	00000001	
AD IN	05	00000001	
AD IN	06	00000001	
AD IN	07	00000001	
AD IN	08	00000001	
INFO			ฃ๗⊗ն

En la pantalla se muestra el estado de las entradas analógicas con los valores que se han configurado en el menu de configuración

6.4.4 TARJETA SD-ETHERNET Y MEMORIA SD

Si se selecciona una posición en la que se encuentra insertada una tarjeta de comunicacion ethernet y memoria SD, se muestra la siguiente pantalla.

Registro Eventos	12 días 321 eve
Eventos	321
Libro	
LIDIE	99.99x
Estado	SD OK

En la pantalla se muestra el estado de la tarjeta de memoria y valores de registros como:

TRI ITEI : Capacidad real de la tarjeta SD.

REGISTRO: Días de registro desde el inicio o el último formateo.

EVENTOS:Número de eventos de tensión detectados desde el incio o último formateo. *LIBRE*: Porcentaje de memoria libre.

ESTRDD: Estado de la memoria:

- a) 5D DK: La tarjeta funciona correctamente.
- b) *NO 5D*: No hay ninguna tarjeta insertada.
- c) PROT ESCR: la tarjeta está protegida contra escritura.
- d) ERROR:La tarjeta SD tiene la un error en memoria y se debe formatear.

6.4.5 TARJETA MEMORIA SD

Si se selecciona una posición en la que se encuentra insertada una tarjeta de memoria SD, se muestra la siguiente pantalla.

Menu Tarjeta	a 1 Tarjeta 2 Tarjeta 3	
Tarjeta 2 Tarjeta 2		
Tam.Mem.	1024 MB	
Registro	12 días	
Eventos	321 💀	
Libre	99.99x	
Estado	SD OK	
INFO		06

En la pantalla se muestra el estado de la tarjeta de memoria y valores de registros como:

TRI ITEI Capacidad real de la tarjeta SD.

REGISTRO: Días de registro desde el inicio o el último formateo.

EVENTOS:Número de eventos de tensión detectados desde el incio o último formateo.

LIBRE: Porcentaje de memoria libre.

ESTRDD: Estado de la memoria:

- a) 5D DK: La tarjeta funciona correctamente.
- b) NO 5D: No hay ninguna tarjeta insertada.
- c) PROT ESCR: la tarjeta está protegida contra escritura.
- d) *ERROR*:La tarjeta SD tiene la un error en memoria y se debe formatear.

6.4.6 TARJETA 4 SALIDAS ±5 MA Y 4 SALIDAS ESTÁTICAS

Si se selecciona una posición en la que se encuentra insertada una tarjeta de expansión de salidas analógicas de ± 5 mA y 4 salidas transistor, se muestra la siguiente pantalla.

6.4.7 TARJETA COMUNICACIONES PROFIBUS

Para acceder a los parámetros que muestra el CVMk2 con respecto a la tarjeta de comunicaciones Profibus, debe acceder al MENU --> TARJETAS --> TARJETA X*.

(*) Varia entre 1, 2 ó 3, dependiendo de la posición donde esté insertada la tarjeta.

Si se selecciona una posición en la que se encuentra insertada una tarjeta de comunicaciones Profibus la pantalla muestra los mensajes:

NUA. PERIF	0
ESTRDO BUS	ЯСТІЙО / INACTIЙO.

El número de periférico por defecto es *D*, pero cambia al iniciarse las comunicaciones al configurado por el usuario según los selectores (Apartado 4.7.7.3). El estado del bus, nos indica si está activo o inactivo.

7. CALIDAD

Para acceder a visualizar los parámetros del menú de calidad, debe ir al menú *CRLIDRD* dentro del *TIENU* principal.

Menu Medida	Demanda Energía
Medida incipal	
Calidad	2300 1
Confin.	2000.1
Sistema	172.620
1.00001	· / _ ····
S.total	172.620 kWA
PF.media	0.999
Frec.	50.00 Hz
INFO MAX	MIN 🔄 🖄 🏵 🖬

Este menu de calidad se divide en dos partes, armónicos y perturbaciones.

7.1. ARMÓNICOS

El menú de armónicos tiene dos grandes partes: una parte para la tensión, y otra para la corriente. Estos dos grandes bloques se dividen a su vez, en tasa de distorsión armónica y descomposición armónica.

Menu	Armónicos	Pertur	b.
Armónicos TH	THD U »		
	THD I »		10.0
THD U1	Har. I	l,	10.2 %
			44.0
THD U2			11.3 z
THD U3			12.4
			15
THD UN			1.J %
INFO	MAX	MIN	U

7.1.1 THD EN TENSIÓN

Dentro del menu THD U se pueden seleccionar algunas opciones, dependiendo de cómo desea que se representen los valores o qué valores desea visualizar.

Las opciones que tiene dentro del menú del THD de tensión son:

- *THD*: Visualiza la tasa de distorsión armónica total de tensión en %, de cada una de las fases y del neutro.
- *INPARE5*: Visualiza el valor en % del THD de tensión de todas las fases y el neutro, pero sólo de armónicos impares.
- *PRRE5*: Visualiza el valor en % del THD de tensión de todas las fases y el neutro, pero sólo de armónicos pares.

En esta pantalla se muestran los siguientes botones sobre las teclas de función:

- *INFD*: Muestra la pantalla de información del sistema (apartado 6.1.1.1 Información del sistema).
- *fIRX*: Muestra la pantalla de valores máximos almacenados. En la pantalla, se muestran los valores máximos de cada variable que se han registrado desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *l'IRX*, aparece la opción *INST* para volver a la pantalla de valores instantáneos.

filli: Muestra la pantalla de valores mínimos almacenados. En la pantalla, se muestran los valores mínimos de cada variable que se han registrado, desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *l'III*, aparece la opción *II*157 para volver a la pantalla de valores instantáneos.

7.1.2 THD EN CORRIENTE

El menú de armónicos también se divide en dos bloques, uno para tensión y otro para la corriente. Estas partes son la tasa de distorsión armónica, en tensión y corriente, y la descomposición armónica tambien para ambas.

Las opciones que tiene dentro del menú del THD de corriente son:

- *THD*: Se visualiza la tasa de distorsión armónica total de corriente en %, de cada una de las fases y del neutro.
- *IMPARE5*: Se muestra el valor en % del THD de corriente de todas las fases y el neutro, pero sólo de armónicos impares.
- *PRRE5*: Se muestra el valor en % del THD de corriente de todas las fases y el neutro, pero sólo de armónicos pares.

En esta pantalla se muestran los siguientes botones sobre las teclas de función:

- *INFD*: Muestra la pantalla de información del sistema (apartado 6.1.1.1 Información del sistema).
- *TRX*: Muestra la pantalla de valores máximos almacenados. En la pantalla, se muestran los valores máximos de cada variable que se han registrado desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *l'IRX*, aparece la opción *INST* para volver a la pantalla de valores instantáneos.

ITIN: Muestra la pantalla de valores mínimos almacenados. En la pantalla, se muestran los valores mínimos de cada variable que se han registrado, desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *l'III*, aparece la opción *II*¹⁵⁷ para volver a la pantalla de valores instantáneos.

114

7.1.3 ARMÓNICOS DE TENSIÓN

En la pantalla de la descomposición armónica de tensión, se muestran los valores numéricos de la descomposición armónica de la fase 1.

Menu	Armónic	os Pe	rturb.			
Armónicos Ha	THD U	>>				
	THD I	>>	H11	H21	H31	H4 1
FUND U1	Har. U Har. I		11.5	21 5	21.5	41.5
2302.0V			10.5	21.0	00.5	41.0
		20.5	12.5	22.5	32.5	42.5
THD U1		50.5	13.5	23.5	33.5	43.5
10.5%	:	30.5	14.5	24.5	34.5	44.5
	1	60.5	15.5	25.5	35.5	45.5
THDU1imp		40.5	16.5	26.5	36.5	46.5
6.7%	1	70.5	17.5	27.5	37.5	47.5
THDU1par		8.5	18.5	28.5	38.5	48.5
4.67		9.5	19.5	29.5	39.5	49.5
4.07.		10.5	20.5	30.5	40.5	50.5
INFO	PROX			GRAP		r⊡⊗6

Los valores se representan por columnas de 10. El la parte izquierda de la pantalla se muestran los valores más importantes en %. Estos valores son:

- *FUND UI*: Valor de la fundamental de la fase 1.
- *THD U1*: Valor en % de la tasa de distorsión armónica de la fase 1
- *THD U1 INP*: Valor en % de la tasa de distorsión armónica de los armónicos impares de la fase 1.
- *THD UI PRR*: Valor en % de la tasa de distorsión armónica de los armónicos pares de la fase 1.

El menu inferior contiene los siguientes botones:

- *INFD*: Muestra la pantalla de información del sistema (apartado 6.1.1.1 Información del sistema).
- *PRDX*: Muestra la pantalla de valores correspondientes a la siguiente fase. Es un menú rotativo que contiene fase 1, fase 2, fase 3 y neutro.

Los valores reprentados en esta pantalla son valores instantáneos que corresponden al valor calculado de media de las muestras de la señal.

GRRP: Muestra una pantalla gráfica, donde se representa el espectro de armónicos. La fase que se representa en la pantalla gráfica corresponde a la que tenía seleccionada en valores numéricos en la pantalla anterior. Las opciones que permite la pantalla gráfica, es cambiar entre visualizar valores de todos los armónicos, valor de los armónicos impares o los pares.

El menu de la pantalla gráfica contiene las diferentes opciones:

- *Z*vx1: Esta tecla, realiza un zoom vertical de la gráfica que tene en pantalla. Es un zoom cíclico con las opciones x1, x2, x4 y x10 y vuelve al principio.
- HDLD: Detiene el refresco de la pantalla. Pulsando esta tecla, el menú de la parte inferior de la pantalla cambia. Concretamente el botón (F3) RUN.
 La tecla RUN permite volver al modo contínuo de visualización gráfica.
- DRTD: Pulsando DRTD, retorna a la pantalla de visualización numérica de valores instantáneos de descomposición armónica. (ver apartado 7.1.3)

Para seleccionar armónicos totales, impares o pares dentro de la pantalla gráfica, debe desplazarse con las flechas arriba/abajo entre las 3 opciones de la parte derecha de la pantalla.

El menú inferior de la pantalla gráfica es el mismo en las tres opciones. Sólo se puede cambiar de menú volviendo a la pantalla de valores numéricos pulsando *DRTD*.

Si desea ver gráficamente los valores de los armónicos de otra fase, debe ir a la pantalla de valores numéricos, cambiar de fase a la deseada con la tecla *PRDX*. y acceder a la pantalla gráfica pulsando *GRRP*.

7.1.4 ARMÓNICOS DE CORRIENTE

En la pantalla de la descomposición armónica de corriente, se visualizan los valores numéricos de la descomposición armónica de la fase 1.

Menu	Armónicos Pe	rturb.			
Armónicos Ha	THDU »				
	THD I »	H11	H21	H31	H4 1
FUND IN	Har. U	11.0	21 0	21.0	41.0
249.750A	Har, I	11.8	21.8	31.8	41.8
	20.8	12.8	22.8	32.8	42.8
THD IN	50.8	13.8	23.8	33.8	43.8
11.47	30.8	14.8	24.8	34.8	44.8
	60.8	15.8	25.8	35.8	45.8
THDINimp	40.8	16.8	26.8	36.8	46.8
6.1%	70.8	17.8	27.8	37.8	47.8
THDINpar	8.8	18.8	28.8	38.8	48.8
5.47	9.8	19.8	29.8	39.8	49.8
0.47.	10.8	20.8	30.8	40.8	50.8
INFO	PROX		GRAP	<u></u> 1	1 🖻 🛇 🖬

Los valores se representan por columnas de 10. El la parte izquierda de la pantalla se muestran los valores más importantes en %. Estos valores son:

- FUND II: Valor de la fundamental de la fase 1.
- *THD I1*: Valor en % de la tasa de distorsión armónica de la fase 1
- *THD I1 IMP*: Valor en % de la tasa de distorsión armónica de los armónicos impares de la fase 1.
- *THD I1 PRR*: Valor en % de la tasa de distorsión armónica de los armónicos pares de la fase 1.

El menu inferior contiene las diferentes opciones:

- *INFD*: Muestra la pantalla de información del sistema (apartado 6.1.1.1 Información del sistema).
- *PRDX*: Muestra la pantalla de valores correspondientes a la siguiente fase. Es un menú rotativo que contiene fase 1, fase 2, fase 3 y neutro.

Los valores representados en esta pantalla son valores instantáneos que corresponden al valor calculado de media de las muestras de la señal.

GRRP: Muestra una pantalla gráfica, donde se representa el espectro de armónicos. La fase que se representa en la pantalla gráfica corresponde a la que tenía seleccionada en valores numéricos en la pantalla anterior. Las opciones que permite la pantalla gráfica, es cambiar entre visualizar valores de todos los armónicos, valor de los armónicos impares o los pares.

El menu de la pantalla gráfica contiene las diferentes opciones:

- *Z*vx1: Esta tecla, realiza un zoom vertical de la gráfica que tiene en pantalla. Es un zoom cíclico con las opciones x1, x2, x4 y x10 y vuelve al principio.
- HOLD: Detiene el refresco de la pantalla. Pulsando esta tecla, el menú de la parte inferior de la pantalla cambia. Concretamente el botón (F3) RUN.
 La tecla RUN permite volver al modo contínuo de visualización gráfica.
- DRTD: Pulsando DRTD, retorna a la pantalla de visualización numérica de valores instantáneos de descomposición armónica. (ver apartado 7.1.4)

Para seleccionar armónicos totales, impares o pares dentro de la pantalla gráfica, debe desplazarse con las flechas arriba/abajo entre las 3 opciones de la parte derecha de la pantalla.

El menú inferior de la pantalla gráfica es el mismo en las tres opciones. Sólo se puede cambiar de menú volviendo a la pantalla de valores numéricos pulsando *DRTD*.

Si desea ver gráficamente los valores de los armónicos de otra fase, debe ir a la pantalla de valores numéricos, cambiar de fase a la deseada con la tecla *PRDX*. y acceder a la pantalla gráfica pulsando *GRRP*.

7.2. PERTURBACIONES

Para acceder a visualizar los parámetros del menú de calidad, debe ir al menú *CRLIDRD* dentro del menú principal.

Dentro del menu CALIDAD, seleccionar la opción PERTURBACIONES.

Menu Armónicos	Perturb.
Medida Principal	Flicker »
V.media	Factor K Deseq. F.Cresta
P.total	172.620
S.total	172.620 kWA
PF.media	0.999
Frec.	50.00 Hz
INFO MAX	<u>MIN Slido</u> e

Las opciones que permite configurar el menú de perturbaciones son:

- *FLICKER*: Calculo de flicker. Medida ponderada y PST.
- FRETOR K: Cálculo del factor k de las corrientes.
- DESEQ.: Desequilibrio y asimetría de tensiones y corrientes
- *F. CRESTR.*: Cálculo del factor de cresta de las tensiones.

7.2.1 FLICKER

El flicker mide las fluctuaciones de la tensión de baja frecuencia. (entre 5 y 25 Hz)

El menú FLICKER permite seleccionar entre dos formas de representar los valores del cálculo.

Las opciones son cálculo PST y el cálculo instantáneo.

7.2.1.1 Calculo PST

El cálculo del valor de flicker PST, es la integración cada 10 minutos del valor de la perceptibilidad instantánea. Las normativas de suministro aconsejan un valor inferior a 1.

El resultado se representa en % en referencia a las tres fases.

Menu Perturb.	Armónicos Perturb. Flicker » PST	
ы	10.0 z	
L2	10.0 z	
L3	10.0 z	
INFO]	6

El menu inferior contiene las diferentes opciones:

INFD: Muestra la pantalla de información del sistema (apartado 6.1.1.1 Información del sistema).

7.2.1.2 Calculo de la media ponderada instantánea.

El cálculo del flicker instantáneo se realiza mediante la media ponderada (WA) de los valores instantáneos.

El resultado representa valores de la media ponderada instantánea a partir de los cuales se calcula el PST.

Menu	Armónicos Perturb.	
Perturb.	Flicker » Inst.	
ប		10.0 "
L2		10.0 "
L3		10.0 "
INFO		- ՄԹ⊗ճ

El menu inferior contiene los siguientes botones:

INFD: Muestra la pantalla de información del sistema (apartado 6.1.1.1 Información del sistema).

7.2.2 FACTOR K

El cálculo del factor k se realiza según la norma ANSI C57.110.

Este parámetro nos indica la potencia adicional que requerimos al transformador o que se pierde, debido a los armónicos de la corriente producido por las cargas no lineales conectadas.

Es un factor de reducción de la potencia de transformadores o sobredimensonamiento de los mismos.

Para cargas lineales, el valor normal del factor k es 1.

El menú inferior contiene las diferentes opciones:

- *INFD*: Muestra la pantalla de información del sistema (apartado 6.1.1.1 Información del sistema).
- *TIRX*: Muestra la pantalla de valores máximos almacenados. En la pantalla, se muestran los valores máximos de cada variable que se han registrado, desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *l'IRX*, se muestra la opción *ll'15T* para volver a la pantalla de valores instantáneos.

filli: Muestra la pantalla de valores mínimos almacenados. En la pantalla, se muestran los valores mínimos de cada variable que se han registrado, desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *l'III*, se muestra la opción *INST* para volver a la pantalla de valores instantáneos.

7.2.3 DESEQUILIBRIO Y ASIMETRÍA

El cálculo del desequilibrio se realiza aplicando el método de componentes simétricas de Fortescue y Stokvis. Éstos valores son representativos de lo desequilibrada que está la instalación y la correcta conexión de las fases.

En la pantalla se representa valores en %. Las variables que se representan en la pantalla son:

- Kd U: Coeficiente de desequilibrio de la tensión.
- Ka U: Coeficiente de asimetría de la tensión.
- Kd I: Coeficiente de desequilibrio de la corriente.
- Ka I: Coeficiente de asimetría de la corriente.

Menu	Armónicos Perturb.	
Rd U	Deseq.	1.0 ²
Ka U		1.0 ^x
Kd I		1.0 ^z
Ka I		1.0 ²
INFO	MAX MIN	

En esta pantalla se muestran los siguientes botones sobre las teclas de función:

- *INFD*: Muestra la pantalla de información del sistema (apartado 6.1.1.1 Información del sistema).
- *IIRX*: Muestra la pantalla de valores máximos almacenados. En la pantalla, se muestran los valores máximos de cada variable que se han registrado desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *l'IRX*, aparece la opción *INST* para volver a la pantalla de valores instantáneos.

ITIN: Muestra la pantalla de valores mínimos almacenados. En la pantalla, se muestran los valores mínimos de cada variable que se han registrado, desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *I^IIII*, aparece la opción *II*157 para volver a la pantalla de valores instantáneos.

7.2.4 FACTOR DE CRESTA

El cálculo del factor de cresta es la relación entre el valor de pico y el RMS. Cuando la señal es senoidal, es valor del factor de cresta corresponde a 1,41 (raíz de 2).

El cálculo del factor de cresta sirve para detectar perturbaciones periódicas en la tensión que no se pueden detectar con el THD.

Las variables que se representan en la pantalla son:

Menu	Armónicos Perturb.		
Perturb.			
		10 (n
11		10.0	
		10/	n –
L2		10.0)
		10/	`
L3		10.0	J
INFO	MAX MIN	·	ແຍຜຍ

En esta pantalla se muestran los siguientes botones sobre las teclas de función:

- *INFD*: Muestra la pantalla de información del sistema (apartado 6.1.1.1 Información del sistema).
- *fIRX*: Muestra la pantalla de valores máximos almacenados. En la pantalla, se muestran los valores máximos de cada variable que se han registrado desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *I*¹*RX*, aparece la opción *I*¹*N*57 para volver a la pantalla de valores instantáneos.

filli: Muestra la pantalla de valores mínimos almacenados. En la pantalla, se muestran los valores mínimos de cada variable que se han registrado, desde el último borrado, junto con la fecha y la hora del registro.

Dentro de la pantalla *[']II*, aparece la opción *II*57 para volver a la pantalla de valores instantáneos.

8. COMUNICACIONES

8.1. PROTOCOLO MODBUS/RTU ®

CVMk2 utiliza como protocolo de comunicaciones el Modbus/RTU ® en el COM2. Éste es un protocolo basado en pregunta-respuesta. El formato de la trama de las preguntas es:

NPAAXXXXYYYY CRC.

NP: Número de periférico que tenga configurado el equipo.

AA: Función Modbus que se desea realizar.

- XXXX:Posición de memoria del equipo donde se desea empezar la función. (p.e. si AA=04 la función és de lectura).
- YYYY:Posiciones de lectura que, desde la posición XXXX, se desean leer o escribir (depende de la función AA).

CRC: Código de detección de errores de 16 bits. (generado automáticamente).

El formato de la respuesta será:

NPAABBCCCC.. CRC

- NP: Número de periférico que responde.
- AA: Función que responde.
- BB: Número de bytes que contiene la respuesta.

CCCC: Valor que contiene el registro

•••

CRC: Registro de deteción de errores.

Para mayor información consultar el protocolo estandar de Modbus ®.

8.2. ESQUEMAS DE CONEXIONADO

8.2.1 CONVERSOR INTELIGENTE.

CVMk2 tiene un puerto de comunicaciones RS-485 Modbus/RTU. Este puerto es para comunicar el master o PC con el módulo de medida.

Conexionado con el módulo de medida mediante conversor inteligente:

Esclavo 3

8.2.2 CONVERSOR TCP2RS.

El conexionado utilizando un conversor ethernet con el módulo de medida, es como muestra la figura. Este conversor permite utilizar el protocolo Modbus/TCP.

Para comunicar correctamente el usuario debe configurar la dirección IP del conversor ethernet a una que se encuentre en el mismo rango que la que tiene el ordenador.

8.2.3 CONVERSOR USB.

Esclavo 1

El conexionado utilizando un conversor USB a RS-485 entre el PC y el módulo de medida, es como muestra la figura.Los pines de salida del conversor USB son como muestra la tabla siguiente.

PIN		DESCRIPCIÓN
1	+	RS-485 -
	-	RS-485 +
2	+	RS-485 -
	-	RS-485 +
G		Tierra

Esclavo 2

Esclavo 3

COMUNICACIONES

127

8.2.4 BUS DE COMUNICACIONES PANTALLA-MÓDULOS

El otro bus de comunicaciones se realiza por el puerto COM1 (DISPLAY). El bus de comunicaciones de la pantalla (master) con los módulos, tiene las mismas características que el bus RS-485. Unas de las más importantes son, la distancia máxima del bus que son 1.200 metros desde el master (que en este caso será la pantalla) hasta el último esclavo y la cantidad de módulos de medida (esclavos) que puede conectar en el bus, que son 32. Esta comunicación utiliza un protocolo de comunicaciones propietario.

8.3. MAPA DE MEMORIA MODBUS/RTU ®

8.3.1 VARIABLES ELÉCTRICAS

VARIABLES ELECTRICAS MODBUS							
VARIABLE	SÍMBOLO	CÓD.	INSTAN	MÁXIMO	MÍNIMO	UNIDAD	
FASE 1							
Tensión fase	V 1	1	00-01	100-103	300-303	V x100	
Corriente	A 1	2	02-03	104-107	304-307	mAx10	
Potencia activa	Kw 1	3	04-05	108-10B	308-30B	Wx10	
Potencia reactiva inductiva	KvarL 1	4	06-07	10C-10F	30C-30F	Wx10	
Potencia reactiva capacitiva	KvarC 1	5	08-09	110-113	310-313	Wx10	
Potencia aparente	kVA1	6	0A-0B	114-117	314-317	VAx10	
Factor de potencia	PF 1	7	0C-0D	118-11B	318-31B	x1000	
Cos φ	Cos φ 1	8	0E-0F	11C-11F	31C-31F	x1000	
FASE 2							
Tensión fase	V 2	9	10-11	120-123	320-323	V x100	
Corriente	A 2	10	12-13	124-127	324-327	mAx10	
Potencia activa	Kw 2	11	14-15	128-12B	328-32B	Wx10	
Potencia reactiva inductiva	KvarL 2	12	16-17	12C-12F	32C-32F	Wx10	
Potencia reactiva capacitiva	KvarC 2	13	18-19	130-133	330-333	Wx10	
Potencia aparente	kVA2	14	1A-1B	134-137	334-337	VAx10	
Factor de potencia	PF 2	15	1C-1D	138-13B	338-33B	x1000	
Cos φ	Cos φ 2	16	1E-1F	13C-13F	33C-33F	x1000	
FASE 3							
Tensión fase	V 3	17	20-21	140-143	340-343	V x100	
Corriente	A 3	18	22-23	144-147	344-347	mAx10	
Potencia activa	Kw 3	19	24-25	148-14B	348-34B	W x10	
Potencia reactiva inductiva	KvarL 3	20	26-27	14C-14F	34C-34F	W x10	
Potencia reactiva capacitiva	KvarC 3	21	28-29	150-153	350-353	W x10	
Potencia aparente	kVA3	22	2A-2B	154-157	354-357	VA x10	
Factor de potencia	PF 3	23	2C-2D	158-15B	358-35B	x 1000	
Cos φ	Cos φ 3	24	2E-2F	15C-15F	35C-35F	x 1000	
NEUTRO							
Tensión de neutro	Vn	25	30-31	160-163	360-363	V x100	
Corriente de neutro	In	26	32-33	164-167	364-367	mAx10	
Frecuencia (L1)	Hz	27	34-35	168-16B	368-36B	Hzx100	
Tensión línea L1-L2	V12	28	36-37	16C-16F	36C-36F	V x100	
Tensión línea L2-L3	V23	29	38-39	170-173	370-373	V x100	
Tensión línea L3-L1	V31	30	3A-3B	174-177	374-377	V x100	
Tensión fase promedio	Vn_AVG	31	3C-3D	178-17B	378-37B	Vx100	
Tensión línea promedio	Vp_AVG	32	3E-3F	17C-17F	37C-37F	Vx100	
Corriente promedio	I_AVG	33	40-41	180-183	380-383	mAx10	
Potencia activa trifásica	Kw III	34	42-43	184-187	384-387	Wx10	

VARIABLE	SÍMBOL	CÓD.	INSTAN	MÁXIMO	MÍNIMO	UNIDAD
Potencia inductiva trifásica	KvarL III	35	44-45	188-18B	388-38B	Wx10
Potencia capacitiva trifásica	KvarC III	36	46-47	18C-18F	38C-38F	Wx10
Potencia aparente trifásica	Kvalll	37	48-49	190-193	390-393	Wx10
Factor de potencia trifásico	PFIII	38	4A-4B	194-197	394-397	x1000
Cos φ trifásico	Cos φ III	39	4C-4D	198-19B	398-39B	x1000
THD V 1	THDV1	40	4E-4F	19C-19F	39C-39F	%x10
THD V 2	THDV2	41	50-51	1A0-1A3	3A0-3A3	%x10
THD V 3	THDV3	42	52-53	1A4-1A7	3A4-3A7	%x10
THD VN	THDVN	43	54-55	1A8-1AB	3A8-3AB	%x10
THD I 1	THDI1	44	56-57	1AC-1AF	3AC-3AF	%x10
THD I 2	THDI2	45	58-59	1B0-1B3	3B0-3B3	%x10
THD I 3	THDI3	46	5A-5B	1B4-1B7	3B4-3B7	%x10
THD IN	THDIN	47	5C-5D	1B8-1BB	3B8-3BB	%x10
THD-V1 Even	THDV1-E	48	5E-5F	1BC-1BF	3BC-3BF	%x10
THD-V2 Even	THDV2-E	49	60-61	1C0-1C3	3C0-3C3	%x10
THD-V3 Even	THDV3-E	50	62-63	1C4-1C7	3C4-3C7	%x10
THD-VN Even	THDVN-E	51	64-65	1C8-1CB	3C8-3CB	%x10
THD-I1 Even	THDI1-E	52	66-67	1CC-1CF	3CC-3CF	%x10
THD-I2 Even	THDI2-E	53	68-69	1D0-1D3	3D0-3D3	%x10
THD-I3 Even	THDI3-E	54	6A-6B	1D4-1D7	3D4-3D7	%x10
THD-IN Even	THDIN-E	55	6C-6D	1D8-1DB	3D8-3DB	%x10
THD-V1 Odd	THDV1-0	56	6E-6F	1DC-1DF	3DC-3DF	%x10
THD-V2 Odd	THDV2-O	57	70-71	1E0-1E3	3E0-3E3	%x10
THD-V3 Odd	THDV3-O	58	72-73	1E4-1E7	3E4-3E7	%x10
THD-VN Odd	THDVN-O	59	74-75	1E8-1EB	3E8-3EB	%x10
THD-I1 Odd	THDI1-O	60	76-77	1EC-1EF	3EC-3EF	%x10
THD-I2 Odd	THDI2-O	61	78-79	1F0-1F3	3F0-3F3	%x10
THD-I3 Odd	THDI3-O	62	7A-7B	1F4-1F7	3F4-3F7	%x10
THD-IN Odd	THDIN-O	63	7C-7D	1F8-1FB	3F8-3FB	%x10
Desequilibrio V	Kd V	64	7E-7F	1FC-1FF	3FC-3FF	%x10
Asimetría V	Ka V	65	80-81	200-203	400-403	%x10
Desequilibrio I	Kd I	66	82-83	204-207	404-407	%x10
Asimetría I	Ka I	67	84-85	208-20B	408-40B	%x10
Temperatura	Т	68	86-87	20C-20F	40C-40F	°Cx10
Flicker inst. ponderado V1	WA_V1	69	88-89			%x10
Flicker inst. ponderado V2	WA_V2	70	8A-8B			%x10
Flicker inst. ponderado V3	WA_V3	71	8C-8D			%x10
Flicker estadístico PST V1	PST_V1	72	8E-8F			%x10
Flicker estadístico PST V2	PST_V2	73	90-91			%x10
Flicker estadístico PST V3	PST_V3	74	92-93			%x10

Factor K I1	K-Fac_I1	75	94-95	228-22B	428-42B	x100
Factor K I2	K-Fac_l2	76	96-97	22C-22F	42C-42F	x100
Factor K I3	K-Fac_I3	77	98-99	230-233	430-433	x100
Factor Cresta V1	Cr-Fac_V1	78	9A-9B	234-237	434-437	x100
Factor Cresta V2	Cr-Fac_V2	79	9C-9D	238-23B	438-43B	x100
Factor Cresta V3	Cr-Fac_V3	80	9E-9F	23C-23F	43C-43F	x100
Potencia Reactiva L1	Kvar1	81	A0-A1	240-243	440-443	varx10
Potencia Reactiva L2	Kvar2	82	A2-A3	244-247	444-447	varx10
Potencia Reactiva L3	Kvar3	83	A4-A5	248-24B	448-44B	varx10
Potencia Reactiva III	kvar III	84	A6-A7	24C-24F	44C-44F	varx10
Pot. Reactiva consumida L1	kvar_c_1	85	A8-A9	250-253	450-453	varx10
Pot. Reactiva consumida L2	kvar_c_2	86	AA-AB	254-257	454-457	varx10
Pot. Reactiva consumida L3	kvar_c_3	87	AC-AD	258-25B	458-45B	varx10
Pot. Reactiva consumida III	kvar_c_III	88	AE-AF	25C-25F	45C-45F	varx10
Pot. Reactiva generada L1	kvar_g_1	89	B0-B1	260-263	460-463	varx10
Pot. Reactiva generada L2	kvar_g_2	90	B2-B3	264-267	464-467	varx10
Pot. Reactiva generada L3	kvar_g_3	91	B4-B5	268-26B	468-46B	varx10
Pot. Reactiva generada III	kvar_g_III	92	B6-B7	26C-26F	46C-46F	varx10

8.3.2. VARIABLES DE ENERGÍA ACTUAL

VARIABLES MODBUS ENERGÍA ACTUAL					
VARIABLE	SÍMBOLO	CÓDIGO	KWH	WH	
TARIFA 1					
Energía activa	Kwh III	129	500-501	502	
Energía reactiva inductiva	KvarhL III	130	503-504	505	
Energía reactiva capacitiva	KvarhC III	131	506-507	508	
Energía Aparente trifásica	kVAhIII	132	509-50A	50B	
Energía activa generada	kWhIII (-)	133	50C-50D	50E	
Energía inductiva generada	kvarLhIII (-)	134	50F-510	511	
Energía capacitiva generada	kvarChIII (-)	135	512-513	514	
Energía aparente generada	kVAhIII (-)	136	515-516	517	
TARIFA 2					
Energía activa	Kwh III	137	518-519	51A	
Energía reactiva inductiva	KvarhL III	138	51B-51C	51D	
Energía reactiva capacitiva	KvarhC III	139	51E-51F	520	
Energía Aparente trifásica	kVAhIII	140	521-522	523	
Energía activa generada	kWhIII (-)	141	524-525	526	
Energía inductiva generada	kvarLhIII (-)	142	527-528	529	
Energía capacitiva generada	kvarChIII (-)	143	52A-52B	52C	
Energía aparente generada	kVAhIII (-)	144	52D-52E	52F	
TARIFA 3					
Energía activa	Kwh III	145	530-531	532	
Energía reactiva inductiva	KvarhL III	146	533-534	535	
Energía reactiva capacitiva	KvarhC III	147	536-537	538	
Energía Aparente trifásica	kVAhIII	148	539-53A	53B	
Energía activa generada	kWhIII (-)	149	53C-53D	53E	
Energía inductiva generada	kvarLhIII (-)	150	53F-540	541	
Energía capacitiva generada	kvarChIII (-)	151	542-543	544	
Energía aparente generada	kVAhIII (-)	152	545-546	547	
TARIFA 4					
Energía activa	Kwh III	153	548-549	54A	
Energía reactiva inductiva	KvarhL III	154	54B-54C	54D	
Energía reactiva capacitiva	KvarhC III	155	54E-54F	550	
Energía Aparente trifásica	kVAhIII	156	551-552	553	
Energía activa generada	kWhIII (-)	157	554-555	556	
Energía inductiva generada	kvarLhIII (-)	158	557-558	559	
Energía capacitiva generada	kvarChIII (-)	159	55A-55B	55C	
Energía aparente generada	kVAhIII (-)	160	55D-55E	55F	
TARIFA 5					
Energía activa	Kwh III	161	560-561	562	
Energía reactiva inductiva	KvarhL III	162	563-564	565	
Energía reactiva capacitiva	KvarhC III	163	566-567	568	
Energía Aparente trifásica	kVAhIII	164	569-56A	56B	

VARIABLE	SÍMBOLO	CÓDIGO	KWH	WH
Energía activa generada	kWhIII (-)	165	56C-56D	56E
Energía inductiva generada	kvarLhIII (-)	166	56F-570	571
Energía capacitiva generada	kvarChIII (-)	167	572-573	574
Energía aparente generada	kVAhIII (-)	168	575-576	577
TARIFA 6				
Energía activa	Kwh III	169	578-579	57A
Energía reactiva inductiva	KvarhL III	170	57B-57C	57D
Energía reactiva capacitiva	KvarhC III	171	57E-57F	580
Energía Aparente trifásica	kVAhIII	172	581-582	583
Energía activa generada	kWhIII (-)	173	584-585	586
Energía inductiva generada	kvarLhIII (-)	174	587-588	589
Energía capacitiva generada	kvarChIII (-)	175	58A-58B	58C
Energía aparente generada	kVAhIII (-)	176	58D-58E	58F
TARIFA 7				
Energía activa	Kwh III	177	590-591	592
Energía reactiva inductiva	KvarhL III	178	593-594	595
Energía reactiva capacitiva	KvarhC III	179	596-597	598
Energía Aparente trifásica	kVAhIII	180	599-59A	59B
Energía activa generada	kWhIII (-)	181	59C-59D	59E
Energía inductiva generada	kvarLhIII (-)	182	59F-5A0	5A1
Energía capacitiva generada	kvarChIII (-)	183	5A2-5A3	5A4
Energía aparente generada	kVAhIII (-)	184	5A5-5A6	5A7
TARIFA 8				
Energía activa	Kwh III	185	5A8-5A9	5AA
Energía reactiva inductiva	KvarhL III	186	5AB-5AC	5AD
Energía reactiva capacitiva	KvarhC III	187	5AE-5AF	5B0
Energía Aparente trifásica	kVAhIII	188	5B1-5B2	5B3
Energía activa generada	kWhIII (-)	189	5B4-5B5	5B6
Energía inductiva generada	kvarLhIII (-)	190	5B7-5B8	5B9
Energía capacitiva generada	kvarChIII (-)	191	5BA-5BB	5BC
Energía aparente generada	kVAhIII (-)	192	5BD-5BE	5BF
TARIFA 9	1			
Energía activa	Kwh III	193	5C0-5C1	5C2
Energía reactiva inductiva	KvarhL III	194	5C3-5C4	5C5
Energía reactiva capacitiva	KvarhC III	195	5C6-5C7	5C8
Energía Aparente trifásica	kVAhIII	196	5C9-5CA	5CB
Energía activa generada	kWhIII (-)	197	5CC-5CD	5CE
Energía inductiva generada	kvarLhIII (-)	198	5CF-5D0	5D1
Energía capacitiva generada	kvarChIII (-)	199	5D2-5D3	5D4
Energía aparente generada	kVAhIII (-)	200	5D5-5D6	5D7
	1			
Energía activa	Kwh III	201	5D8-5D9	5DA
Energía reactiva inductiva	KvarhL III	202	5DB-5DC	5DD
Energía reactiva capacitiva	KvarhC III	203	5DE-5DF	5E0

Energía Aparente trifásica	kVAhIII	204	5E1-5E2	5E3
Energía activa generada	kWhIII (-)	205	5E4-5E5	5E6
Energía inductiva generada	kvarLhIII (-)	206	5E7-5E8	5E9
Energía capacitiva generada	kvarChIII (-)	207	5EA-5EB	5EC
Energía aparente generada	kVAhIII (-)	208	5ED-5EE	5EF

8.3.3. VARIABLES DE ENERGÍA MES ANTERIOR

VARIABLES MODBUS ENERGÍA MES ANTERIOR				
VARIABLE	SÍMBOLO	KW∙H	WH	
TARIFA 1				
Energía activa	Kwh III	600-601	602	
Energía reactiva inductiva	KvarhL III	603-604	605	
Energía reactiva capacitiva	KvarhC III	606-607	608	
Energía Aparente trifásica	kVAhIII	609-60A	60B	
Energía activa generada	kWhIII (-)	60C-60D	60E	
Energía inductiva generada	kvarLhIII (-)	60F-610	611	
Energía capacitiva generada	kvarChIII (-)	612-613	614	
Energía aparente generada	kVAhIII (-)	615-616	617	
TARIFA 2				
Energía activa	Kwh III	618-619	61A	
Energía reactiva inductiva	KvarhL III	61B-61C	61D	
Energía reactiva capacitiva	KvarhC III	61E-61F	620	
Energía Aparente trifásica	kVAhIII	621-622	623	
Energía activa generada	kWhIII (-)	624-625	626	
Energía inductiva generada	kvarLhIII (-)	627-628	629	
Energía capacitiva generada	kvarChIII (-)	62A-62B	62C	
Energía aparente generada	kVAhIII (-)	62D-62E	62F	
TARIFA 3				
Energía activa	Kwh III	630-631	632	
Energía reactiva inductiva	KvarhL III	633-634	635	
Energía reactiva capacitiva	KvarhC III	636-637	638	
Energía Aparente trifásica	kVAhIII	639-63A	63B	
Energía activa generada	kWhIII (-)	63C-63D	63E	
Energía inductiva generada	kvarLhIII (-)	63F-640	641	
Energía capacitiva generada	kvarChIII (-)	642-643	644	
Energía aparente generada	kVAhIII (-)	645-646	647	
TARIFA 4				
Energía activa	Kwh III	648-649	64A	
Energía reactiva inductiva	KvarhL III	64B-64C	64D	
Energía reactiva capacitiva	KvarhC III	64E-64F	650	
Energía Aparente trifásica	kVAhIII	651-652	653	
Energía activa generada	kWhIII (-)	654-655	656	
Energía inductiva generada	kvarLhIII (-)	657-658	659	
Energía capacitiva generada	kvarChIII (-)	65A-65B	65C	
Energía aparente generada	kVAhIII (-)	65D-65E	65F	

TARIFA 5			
Energía activa	Kwh III	660-661	662
Energía reactiva inductiva	KvarhL III	663-664	665
Energía reactiva capacitiva	KvarhC III	666-667	668
Energía Aparente trifásica	kVAhIII	669-66A	66B
Energía activa generada	kWhIII (-)	66C-66D	66E
Energía inductiva generada	kvarLhIII (-)	66F-670	671
Energía capacitiva generada	kvarChIII (-)	672-673	674
Energía aparente generada	kVAhIII (-)	675-676	677
TARIFA 6			
Energía activa	Kwh III	678-679	67A
Energía reactiva inductiva	KvarhL III	67B-67C	67D
Energía reactiva capacitiva	KvarhC III	67E-67F	680
Energía Aparente trifásica	kVAhIII	681-682	683
Energía activa generada	kWhIII (-)	684-685	686
Energía inductiva generada	kvarLhIII (-)	687-688	689
Energía capacitiva generada	kvarChIII (-)	68A-68B	68C
Energía aparente generada	kVAhIII (-)	68D-68E	68F
TARIFA 7	· · · · · · · · · · · · · · · · · · ·		
Energía activa	Kwh III	690-691	692
Energía reactiva inductiva	KvarhL III	693-694	695
Energía reactiva capacitiva	KvarhC III	696-697	698
Energía Aparente trifásica	kVAhIII	699-69A	69B
Energía activa generada	kWhIII (-)	69C-69D	69E
Energía inductiva generada	kvarLhIII (-)	69F-6A0	6A1
Energía capacitiva generada	kvarChIII (-)	6A2-6A3	6A4
Energía aparente generada	kVAhIII (-)	6A5-6A6	6A7
TARIFA 8			
Energía activa	Kwh III	6A8-6A9	6AA
Energía reactiva inductiva	KvarhL III	6AB-6AC	6AD
Energía reactiva capacitiva	KvarhC III	6AE-6AF	6B0
Energía Aparente trifásica	kVAhIII	6B1-6B2	6B3
Energía activa generada	kWhIII (-)	6B4-6B5	6B6
Energía inductiva generada	kvarLhIII (-)	6B7-6B8	6B9
Energía capacitiva generada	kvarChIII (-)	6BA-6BB	6BC
Energía aparente generada	kVAhIII (-)	6BD-6BE	6BF
TARIFA 9			
Energía activa	Kwh III	6C0-6C1	6C2
Energía reactiva inductiva	KvarhL III	6C3-6C4	6C5
Energía reactiva capacitiva	KvarhC III	6C6-6C7	6C8
Energía Aparente trifásica	kVAhIII	6C9-6CA	6CB
Energía activa generada	kWhIII (-)	6CC-6CD	6CE
Energía inductiva generada	kvarLhIII (-)	6CF-6D0	6D1
Energía capacitiva generada	kvarChIII (-)	6D2-6D3	6D4
Energía aparente generada	kVAhIII (-)	6D5-6D6	6D7

TOTAL TARIFAS			
Energía activa	Kwh III	6D8-6D9	6DA
Energía reactiva inductiva	KvarhL III	6DB-6DC	6DD
Energía reactiva capacitiva	KvarhC III	6DE-6DF	6E0
Energía Aparente trifásica	kVAhIII	6E1-6E2	6E3
Energía activa generada	kWhIII (-)	6E4-6E5	6E6
Energía inductiva generada	kvarLhIII (-)	6E7-6E8	6E9
Energía capacitiva generada	kvarChIII (-)	6EA-6EB	6EC
Energía aparente generada	kVAhIII (-)	6ED-6EE	6EF

8.3.4. VARIABLES DE ENERGÍA AÑO ANTERIOR

VARIABLES MODBUS ENERGÍA AÑO ANTERIOR						
VARIABLE	SÍMBOLO	KW·H	WH			
TARIFA 1						
Energía activa	Kwh III	700-701	702			
Energía reactiva inductiva	KvarhL III	703-704	705			
Energía reactiva capacitiva	KvarhC III	706-707	708			
Energía Aparente trifásica	kVAhIII	709-70A	70B			
Energía activa generada	kWhIII (-)	70C-70D	70E			
Energía inductiva generada	kvarLhIII (-)	70F-710	711			
Energía capacitiva generada	kvarChIII (-)	712-713	714			
Energía aparente generada	kVAhIII (-)	715-716	717			
TARIFA 2						
Energía activa	Kwh III	718-719	71A			
Energía reactiva inductiva	KvarhL III	71B-71C	71D			
Energía reactiva capacitiva	KvarhC III	71E-71F	720			
Energía Aparente trifásica	kVAhIII	721-722	723			
Energía activa generada	kWhIII (-)	724-725	726			
Energía inductiva generada	kvarLhIII (-)	727-728	729			
Energía capacitiva generada	kvarChIII (-)	72A-72B	72C			
Energía aparente generada	kVAhIII (-)	72D-72E	72F			
TARIFA 3						
Energía activa	Kwh III	730-731	732			
Energía reactiva inductiva	KvarhL III	733-734	735			
Energía reactiva capacitiva	KvarhC III	736-737	738			
Energía Aparente trifásica	kVAhIII	739-73A	73B			
Energía activa generada	kWhIII (-)	73C-73D	73E			
Energía inductiva generada	kvarLhIII (-)	73F-740	741			
Energía capacitiva generada	kvarChIII (-)	742-743	744			
Energía aparente generada	kVAhIII (-)	745-746	747			

TARIFA 4			
Energía activa	Kwh III	748-749	74A
Energía reactiva inductiva	KvarhL III	74B-74C	74D
Energía reactiva capacitiva	KvarhC III	74E-74F	750
Energía Aparente trifásica	kVAhIII	751-752	753
Energía activa generada	kWhIII (-)	754-755	756
Energía inductiva generada	kvarLhIII (-)	757-758	759
Energía capacitiva generada	kvarChIII (-)	75A-75B	75C
Energía aparente generada	kVAhIII (-)	75D-75E	75F
TARIFA 5			
Energía activa	Kwh III	760-761	762
Energía reactiva inductiva	KvarhL III	763-764	765
Energía reactiva capacitiva	KvarhC III	766-767	768
Energía Aparente trifásica	kVAhIII	769-76A	76B
Energía activa generada	kWhIII (-)	76C-76D	76E
Energía inductiva generada	kvarLhIII (-)	76F-770	771
Energía capacitiva generada	kvarChIII (-)	772-773	774
Energía aparente generada	kVAhIII (-)	775-776	777
TARIFA 6			n
Energía activa	Kwh III	778-779	77A
Energía reactiva inductiva	KvarhL III	77B-77C	77D
Energía reactiva capacitiva	KvarhC III	77E-77F	780
Energía Aparente trifásica	kVAhIII	781-782	783
Energía activa generada	kWhIII (-)	784-785	786
Energía inductiva generada	kvarLhIII (-)	787-788	789
Energía capacitiva generada	kvarChIII (-)	78A-78B	78C
Energía aparente generada	kVAhIII (-)	78D-78E	78F
TARIFA 7			n
Energía activa	Kwh III	790-791	792
Energía reactiva inductiva	KvarhL III	793-794	795
Energía reactiva capacitiva	KvarhC III	796-797	798
Energía Aparente trifásica	kVAhIII	799-79A	79B
Energía activa generada	kWhIII (-)	79C-79D	79E
Energía inductiva generada	kvarLhIII (-)	79F-7A0	7A1
Energía capacitiva generada	kvarChIII (-)	7A2-7A3	7A4
Energía aparente generada	kVAhIII (-)	7A5-7A6	7A7
TARIFA 8			
Energía activa	Kwh III	7A8-7A9	7AA
Energía reactiva inductiva	KvarhL III	7AB-7AC	7AD
Energía reactiva capacitiva	KvarhC III	7AE-7AF	7B0
Energía Aparente trifásica	kVAhIII	7B1-7B2	7B3
Energía activa generada	kWhIII (-)	7B4-7B5	7B6
Energía inductiva generada	kvarLhIII (-)	7B7-7B8	7B9
Energía capacitiva generada	kvarChIII (-)	7BA-7BB	7BC
Energía aparente generada	kVAhIII (-)	7BD-7BF	7BF

TARIFA 9			
Energía activa	Kwh III	7C0-7C1	7C2
Energía reactiva inductiva	KvarhL III	7C3-7C4	7C5
Energía reactiva capacitiva	KvarhC III	7C6-7C7	7C8
Energía Aparente trifásica	kVAhIII	7C9-7CA	7CB
Energía activa generada	kWhIII (-)	7CC-7CD	7CE
Energía inductiva generada	kvarLhIII (-)	7CF-7D0	7D1
Energía capacitiva generada	kvarChIII (-)	7D2-7D3	7D4
Energía aparente generada	kVAhIII (-)	7D5-7D6	7D7
TOTAL TARIFAS			
Energía activa	Kwh III	7D8-7D9	7DA
Energía reactiva inductiva	KvarhL III	7DB-7DC	7DD
Energía reactiva capacitiva	KvarhC III	7DE-7DF	7E0
Energía Aparente trifásica	kVAhIII	7E1-7E2	7E3
Energía activa generada	kWhIII (-)	7E4-7E5	7E6
Energía inductiva generada	kvarLhIII (-)	7E7-7E8	7E9
Energía capacitiva generada	kvarChIII (-)	7EA-7EB	7EC
Energía aparente generada	kVAhIII (-)	7ED-7EE	7EF

8.3.5. VARIABLES DE MÁXIMA DEMANDA.

VARIABLE	VARIABLES MODBUS MÁXIMA DEMANDA							
VARIABLE MAXIMA DEMANDA	SÍMBOLO	CÓD.	INSTANT.	MÁXIMO	UNIDAD			
TARIFA 1								
Potencia activa trifásica	Pd_kWIII	300	800-801	900-903	W			
Potencia aparente trifásica	Pd_kVAIII	301	802-803	904-907	VA			
Corriente trifásica (promedio)	Pd_I_AVG	302	804-805	908-90B	mA			
Corriente fase 1	Pd_l1	303	806-807	90C-90F	mA			
Corriente fase 2	Pd_l2	304	808-809	910-913	mA			
Corriente fase 3	Pd_I3	305	80A-80B	914-917	mA			
TARIFA 2								
Potencia activa trifásica	Pd_kWIII	306	80C-80D	918-91B	W			
Potencia aparente trifásica	Pd_kVAIII	307	80E-80F	91C-91F	VA			
Corriente trifásica (promedio)	Pd_I_AVG	308	810-811	920-923	mA			
Corriente fase 1	Pd_l1	309	812-813	924-927	mA			
Corriente fase 2	Pd_l2	310	814-815	928-92B	mA			
Corriente fase 3	Pd_I3	311	816-817	92C-92F	mA			
TARIFA 3								
Potencia activa trifásica	Pd_kWIII	312	818-819	930-933	W			
Potencia aparente trifásica	Pd_kVAIII	313	81A-81B	934-937	VA			
Corriente trifásica (promedio)	Pd_I_AVG	314	81C-81D	938-93B	mA			
Corriente fase 1	Pd_l1	315	81E-81F	93C-93F	mA			
Corriente fase 2	Pd_l2	316	820-821	940-943	mA			
Corriente fase 3	Pd_I3	317	822-823	944-947	mA			

TARIFA 4 Potencia activa trifásica Pd_kWIII 318 824-825 948-94B W Potencia aparente trifásica Pd_kVAIII 319 826-827 94C-94F WA Corriente trifásica (promedio) Pd_LAVG 320 828-829 950-953 mA Corriente fase 1 Pd_I1 321 82A-82B 954-957 mA Corriente fase 2 Pd_I2 322 82C-827 95C-955 mA Corriente fase 3 Pd_J3 323 82E-82F 95C-956 mA Corriente fase 3 Pd_kWIII 324 830-831 960-963 W Potencia aparente trifásica Pd_kVVIII 326 832-833 964-967 VA Corriente fase 1 Pd_I2 328 838-839 970-973 mA Corriente fase 1 Pd_I1 330 83C-83D 974-977 MA Corriente fase 3 Pd_KWIII 330 83C-83F 97C-97F VA Corriente fase 1 Pd_IAG 332						
Potencia activa trifásica Pd_kWIII 318 824-825 948-94B W Potencia aparente trifásica Pd_kVAIII 319 826-827 94C-94F VA Corriente trifásica (promedio) Pd_LAVG 320 828-829 950-953 mA Corriente fase 1 Pd_11 321 82A-82B 954-957 mA Corriente fase 3 Pd_12 322 82C-82F 95C-955 mA Corriente fase 3 Pd_13 323 82E-82F 95C-957 mA Corriente fase 1 Pd_11 322 832-835 96B-963 W Potencia activa trifásica Pd_kVAIII 325 832-835 96B-965 mA Corriente fase 1 Pd_11 327 836-837 96C-967 mA Corriente fase 1 Pd_12 328 838-839 970-973 mA Corriente fase 1 Pd_13 329 83A-838 974-977 MA Corriente fase 1 Pd_14 330 832-837 98C-987 MA </td <td>TARIFA 4</td> <td></td> <td></td> <td></td> <td></td> <td></td>	TARIFA 4					
Potencia aparente trifásica Pd_kVAIII 319 826-827 94C-94F VA Corriente trifásica (promedio) Pd_LAVG 320 828-829 950-953 mA Corriente fase 1 Pd_11 321 82A-82B 954-957 mA Corriente fase 2 Pd_12 322 82C-82D 956-956 mA Corriente fase 3 Pd_13 323 82E-82F 95C-95F mA Corriente fase 3 Pd_18 324 830-831 960-963 W Potencia aparente trifásica Pd_kWIII 324 830-831 966-967 VA Corriente fase 1 Pd_11 327 836-837 96C-96F mA Corriente fase 3 Pd_12 328 838-839 974-977 mA Corriente fase 3 Pd_13 329 83A-838 974-977 MA Corriente fase 3 Pd_14/NG 330 83C-83D 978-97B W Potencia activa trifásica Pd_kVAIII 331 842-843 984-987 <td< td=""><td>Potencia activa trifásica</td><td>Pd_kWIII</td><td>318</td><td>824-825</td><td>948-94B</td><td>W</td></td<>	Potencia activa trifásica	Pd_kWIII	318	824-825	948-94B	W
Corriente trifásica (promedio) Pd_I_AVG 320 828-829 950-953 mA Corriente fase 1 Pd_I1 321 82A-82B 954-957 mA Corriente fase 2 Pd_I2 322 82C-82D 958-95B mA Corriente fase 3 Pd_I3 323 82E-82F 95C-95F mA TARIFA 5 Potencia activa trifásica Pd_KVIII 324 830-831 960-963 W Corriente fase 1 Pd_KVIII 325 832-833 964-967 VA Corriente fase 1 Pd_IAVG 326 834-835 988-96B mA Corriente fase 1 Pd_I2 328 838-839 970-973 mA Corriente fase 3 Pd_I2 328 838-839 970-977 MA TARIFA 6 Potencia activa trifásica Pd_KVIII 330 83C-83D 978-97B W Potencia activa trifásica Pd_KVAIII 331 83E-83F 97C-97F VA Corriente fase 1 Pd_IAVG 332 <	Potencia aparente trifásica	Pd_kVAIII	319	826-827	94C-94F	VA
Corriente fase 1 Pd_I1 321 82A-82B 954-957 mA Corriente fase 2 Pd_I2 322 82C-82D 958-95B mA Corriente fase 3 Pd_I3 323 82E-82F 95C-95F mA Potencia activa trifásica Pd_kWIII 324 830-831 960-963 W Potencia aparente trifásica Pd_kVAIII 325 832-833 964-967 VA Corriente fase 1 Pd_I1 327 836-837 96C-96F mA Corriente fase 1 Pd_I2 328 838-839 970-973 mA Corriente fase 3 Pd_I3 329 83A-83B 974-977 mA Corriente fase 3 Pd_I3 329 83A-83B 974-977 mA Corriente fase 1 Pd_I4 331 83E-83F 97C-97F VA Corriente fase 1 Pd_I1 333 842-843 984-987 mA Corriente fase 2 Pd_I2 334 844-845 988-988 mA	Corriente trifásica (promedio)	Pd_I_AVG	320	828-829	950-953	mA
Corriente fase 2 Pd_I2 322 82C-82D 958-95B mA Corriente fase 3 Pd_I3 323 82E-82F 95C-95F mA TARIFA 5	Corriente fase 1	Pd_I1	321	82A-82B	954-957	mA
Corriente fase 3 Pd_I3 323 82E-82F 95C-95F mA TARIFA 5 Potencia activa trifásica Pd_kWIII 324 830-831 960-963 W Potencia aparente trifásica Pd_kVAIII 325 832-833 964-967 VA Corriente fase 1 Pd_I_AVG 326 834-835 968-96B mA Corriente fase 2 Pd_I2 328 838-839 970-973 mA Corriente fase 3 Pd_I3 329 83A-83B 974-977 mA Corriente fase 3 Pd_I3 320 832-83D 978-97B W Potencia aparente trifásica Pd_kVAIII 331 83E-83F 97C-97F VA Corriente fase 1 Pd_I1 333 842-843 984-987 mA Corriente fase 1 Pd_I1 333 842-843 984-987 mA Corriente fase 1 Pd_I3 335 846-847 98C-98F mA Corriente fase 2 Pd_I1 333 842-843 984-987	Corriente fase 2	Pd_l2	322	82C-82D	958-95B	mA
TARIFA 5 Potencia activa trifásica Pd_kVIII 324 830-831 960-963 W Potencia aparente trifásica Pd_kVAIII 325 832-833 964-967 VA Corriente trifásica (promedio) Pd_1_AVG 326 834-835 968-96B mA Corriente fase 1 Pd_11 327 836-837 96C-96F mA Corriente fase 3 Pd_12 328 838-839 970-973 mA Corriente fase 3 Pd_13 329 83A-83B 974-977 mA TARIFA 6 W Potencia activa trifásica Pd_kWIII 330 83C-83D 978-97F W Corriente fase 1 Pd_11 333 842-843 984-987 mA Corriente fase 1 Pd_11 333 842-843 984-987 mA Corriente fase 3 Pd_13 335 846-847 98C-98F mA Corriente fase 3 Pd_13 337 84A-84B 994-997 VA	Corriente fase 3	Pd_I3	323	82E-82F	95C-95F	mA
Potencia activa trifásica Pd_kWIII 324 830-831 960-963 W Potencia aparente trifásica Pd_kVAIII 325 832-833 964-967 VA Corriente trifásica (promedio) Pd_I_AVG 326 834-835 968-96B mA Corriente fase 1 Pd_11 327 836-837 96C-96F mA Corriente fase 2 Pd_12 328 838-839 970-973 mA Corriente fase 3 Pd_13 329 83A-83B 974-977 mA TARIFA 6 W Potencia activa trifásica Pd_kVAIII 331 83E-83F 97C-97F VA Corriente fase 1 Pd_11 333 842-843 984-983 mA Corriente fase 2 Pd_12 334 844-845 988-98B mA Corriente fase 3 Pd_13 335 846-847 98C-98F mA Corriente fase 3 Pd_13 336 848-849 990-993 W Potencia aparente trifásica	TARIFA 5					
Potencia aparente trifásica Pd_kVAIII 325 832-833 964-967 VA Corriente trifásica (promedio) Pd_IAVG 326 834-835 968-96B mA Corriente fase 1 Pd_I1 327 836-837 96C-96F mA Corriente fase 2 Pd_I2 328 838-839 970-973 mA Corriente fase 3 Pd_I3 329 83A-83B 974-977 mA TARIFA 6 W Potencia activa trifásica Pd_kVIII 330 83C-83D 978-97B W Potencia aparente trifásica Pd_kVIII 331 83E-83F 97C-97F VA Corriente fase 1 Pd_I1 333 842-843 984-987 mA Corriente fase 3 Pd_I3 335 846-847 98C-98F mA TARIFA 7 98C-98F mA Corriente fase 3 Pd_I3 335 846-847 98C-98F mA <td< td=""><td>Potencia activa trifásica</td><td>Pd_kWIII</td><td>324</td><td>830-831</td><td>960-963</td><td>W</td></td<>	Potencia activa trifásica	Pd_kWIII	324	830-831	960-963	W
Corriente trifásica (promedio) Pd_I_AVG 326 834-835 968-96B mA Corriente fase 1 Pd_I1 327 836-837 96C-96F mA Corriente fase 2 Pd_I2 328 838-839 970-973 mA Corriente fase 3 Pd_I3 329 83A-83B 974-977 mA TARIFA 6 Potencia aparente trifásica Pd_kVAIII 331 83E-83F 97C-97F VA Corriente fase 1 Pd_IAVG 332 840-841 980-983 mA Corriente fase 1 Pd_I1 333 842-843 984-987 mA Corriente fase 2 Pd_I2 334 844-845 988-98B mA Corriente fase 3 Pd_I3 335 846-847 986-985 mA Corriente fase 3 Pd_I4 336 848-849 990-993 W Potencia activa trifásica Pd_kVNIII 336 846-847 986-98F mA Corriente fase 1 Pd_I1 339	Potencia aparente trifásica	Pd_kVAIII	325	832-833	964-967	VA
Corriente fase 1 Pd_I1 327 836-837 96C-96F mA Corriente fase 2 Pd_I2 328 838-839 970-973 mA Corriente fase 3 Pd_I3 329 83A-83B 974-977 mA TARIFA 6 MA Potencia activa trifásica Pd_kWIII 330 83C-83D 978-97B W Potencia aparente trifásica Pd_kVAIII 331 83E-83F 97C-97F VA Corriente trifásica (promedio) Pd_LAVAG 332 840-841 980-983 mA Corriente fase 1 Pd_I1 333 842-843 984-987 mA Corriente fase 2 Pd_I2 334 844-845 988-98B mA Corriente fase 3 Pd_I3 335 846-847 98C-98F mA TARIFA 7 980-993 W Potencia activa trifásica Pd_kWVIII 336 848-849 990-993 W	Corriente trifásica (promedio)	Pd_I_AVG	326	834-835	968-96B	mA
Corriente fase 2 Pd_I2 328 838-839 970-973 mA Corriente fase 3 Pd_I3 329 83A-83B 974-977 mA TARIFA 6 MA Potencia activa trifásica Pd_kWIII 330 83C-83D 978-97B W Potencia aparente trifásica Pd_kVAIII 331 83E-83F 97C-97F VA Corriente fase 1 Pd_IA 332 840-841 980-983 mA Corriente fase 2 Pd_I2 334 844-845 988-98B mA Corriente fase 3 Pd_I3 335 846-847 98C-98F mA Corriente fase 3 Pd_KWIII 336 848-849 990-993 W Potencia aparente trifásica Pd_kVVIII 337 84A-84B 994-997 VA Corriente fase 1 Pd_I1 339 84E-84F 99C-99F mA Corriente fase 1 Pd_I1 339 84E-84F 99C-99F mA	Corriente fase 1	Pd_I1	327	836-837	96C-96F	mA
Corriente fase 3 Pd_I3 329 83A-83B 974-977 mA TARIFA 6	Corriente fase 2	Pd_l2	328	838-839	970-973	mA
TARIFA 6 Potencia activa trifásica Pd_kWIII 330 83C-83D 978-97B W Potencia aparente trifásica Pd_kVAIII 331 83E-83F 97C-97F VA Corriente trifásica (promedio) Pd_LAVG 332 840-841 980-983 mA Corriente fase 1 Pd_I1 333 842-843 984-987 mA Corriente fase 2 Pd_I2 334 844-845 988-98B mA Corriente fase 3 Pd_I3 335 846-847 98C-98F mA TARIFA 7 900-993 W Potencia activa trifásica Pd_kWIII 336 848-849 990-993 W Corriente fase 1 Pd_LAVG 338 84C-84D 998-99B mA Corriente fase 1 Pd_I1 339 84E-84F 99C-997 WA Corriente fase 2 Pd_I2 340 850-851 9A0-9A3 mA Corriente fase 3 Pd_I2 340 850-857 9AC-9AF	Corriente fase 3	Pd_I3	329	83A-83B	974-977	mA
Potencia activa trifásica Pd_kWIII 330 83C-83D 978-97B W Potencia aparente trifásica Pd_kVAIII 331 83E-83F 97C-97F VA Corriente trifásica (promedio) Pd_LAVG 332 840-841 980-983 mA Corriente fase 1 Pd_11 333 842-843 984-987 mA Corriente fase 2 Pd_12 334 844-845 988-988 mA Corriente fase 3 Pd_13 335 846-847 98C-98F mA Corriente fase 3 Pd_13 336 848-849 990-993 W Potencia activa trifásica Pd_kVVIII 337 84A-84B 994-997 VA Corriente fase 1 Pd_LAVG 338 84C-84D 998-99B mA Corriente fase 1 Pd_11 339 84E-84F 99C-99F mA Corriente fase 2 Pd_12 340 850-851 9A0-9A3 mA Corriente fase 3 Pd_13 341 852-853 9A4-9A7 mA	TARIFA 6					
Potencia aparente trifásica Pd_kVAIII 331 83E-83F 97C-97F VA Corriente trifásica (promedio) Pd_I_AVG 332 840-841 980-983 mA Corriente fase 1 Pd_I1 333 842-843 984-987 mA Corriente fase 2 Pd_I2 334 844-845 988-98B mA Corriente fase 3 Pd_I3 335 846-847 98C-98F mA Corriente fase 3 Pd_I3 335 846-847 98C-98F mA TARIFA 7	Potencia activa trifásica	Pd_kWIII	330	83C-83D	978-97B	W
Corriente trifásica (promedio) Pd_I_AVG 332 840-841 980-983 mA Corriente fase 1 Pd_I1 333 842-843 984-987 mA Corriente fase 2 Pd_I2 334 844-845 988-98B mA Corriente fase 3 Pd_I3 335 846-847 98C-98F mA Corriente fase 3 Pd_I3 335 846-847 98C-98F mA TARIFA 7	Potencia aparente trifásica	Pd_kVAIII	331	83E-83F	97C-97F	VA
Corriente fase 1 Pd_I1 333 842-843 984-987 mA Corriente fase 2 Pd_I2 334 844-845 988-98B mA Corriente fase 3 Pd_I3 335 846-847 98C-98F mA Corriente fase 3 Pd_KWIII 336 848-849 990-993 W Potencia activa trifásica Pd_kVVIII 337 84A-84B 994-997 VA Corriente trifásica (promedio) Pd_LAVG 338 84C-84D 998-99B mA Corriente fase 1 Pd_I1 339 84E-84F 99C-99F mA Corriente fase 2 Pd_I2 340 850-851 9A0-9A3 mA Corriente fase 3 Pd_I3 341 852-853 9A4-9A7 mA TARIFA 8 Potencia activa trifásica Pd_kWIII 342 854-855 9A8-9AB W Potencia aparente trifásica Pd_kVAIII 343 856-857 9AC-9AF VA Corriente fase 1 Pd_LAVG 344 858-859 <t< td=""><td>Corriente trifásica (promedio)</td><td>Pd_I_AVG</td><td>332</td><td>840-841</td><td>980-983</td><td>mA</td></t<>	Corriente trifásica (promedio)	Pd_I_AVG	332	840-841	980-983	mA
Corriente fase 2 Pd_I2 334 844-845 988-98B mA Corriente fase 3 Pd_I3 335 846-847 98C-98F mA TARIFA 7 Potencia activa trifásica Pd_KVAIII 336 848-849 990-993 W Potencia aparente trifásica Pd_KVAIII 337 84A-84B 994-997 VA Corriente trifásica (promedio) Pd_I_AVG 338 84C-84D 998-99B mA Corriente fase 1 Pd_I1 339 84E-84F 99C-99F mA Corriente fase 2 Pd_I2 340 850-851 9A0-9A3 mA Corriente fase 3 Pd_I3 341 852-853 9A4-9A7 mA TARIFA 8 Potencia activa trifásica Pd_KVAIII 343 856-857 9AC-9AF VA Corriente trifásica (promedio) Pd_LAVG 344 858-859 9B0-9B3 mA Corriente fase 1 Pd_I1 345 85A-85B 9B4-9B7 mA Corriente fase 2 Pd_I2 <td>Corriente fase 1</td> <td>Pd_l1</td> <td>333</td> <td>842-843</td> <td>984-987</td> <td>mA</td>	Corriente fase 1	Pd_l1	333	842-843	984-987	mA
Corriente fase 3 Pd_I3 335 846-847 98C-98F mA TARIFA 7 Potencia activa trifásica Pd_kWIII 336 848-849 990-993 W Potencia aparente trifásica Pd_kVAIII 337 84A-84B 994-997 VA Corriente trifásica (promedio) Pd_I_AVG 338 84C-84D 998-99B mA Corriente fase 1 Pd_I1 339 84E-84F 99C-99F mA Corriente fase 2 Pd_I2 340 850-851 9A0-9A3 mA Corriente fase 3 Pd_I3 341 852-853 9A4-9A7 mA TARIFA 8 Potencia aparente trifásica Pd_kWIII 342 854-855 9A8-9AB W Potencia aparente trifásica Pd_kWIII 343 856-857 9AC-9AF VA Corriente fase 1 Pd_LAVG 344 858-859 9B0-9B3 mA Corriente fase 1 Pd_I1 345 85A-85B 9B4-9B7 mA Corriente fase 2 Pd_I2 <td>Corriente fase 2</td> <td>Pd_l2</td> <td>334</td> <td>844-845</td> <td>988-98B</td> <td>mA</td>	Corriente fase 2	Pd_l2	334	844-845	988-98B	mA
TARIFA 7 Potencia activa trifásica Pd_kWIII 336 848-849 990-993 W Potencia aparente trifásica Pd_kVAIII 337 84A-84B 994-997 VA Corriente trifásica (promedio) Pd_I_AVG 338 84C-84D 998-99B mA Corriente fase 1 Pd_I1 339 84E-84F 99C-99F mA Corriente fase 2 Pd_I2 340 850-851 9A0-9A3 mA Corriente fase 3 Pd_I3 341 852-853 9A4-9A7 mA TARIFA 8 Potencia aparente trifásica Pd_kWIII 342 854-855 9A8-9AB W Potencia aparente trifásica Pd_kVAIII 343 856-857 9AC-9AF VA Corriente fase 1 Pd_LAVG 344 858-859 9B0-9B3 mA Corriente fase 1 Pd_I1 345 85A-85B 9B4-9B7 mA Corriente fase 2 Pd_I2 346 85C-85D 9B8-9BB mA	Corriente fase 3	Pd_I3	335	846-847	98C-98F	mA
Potencia activa trifásica Pd_kWIII 336 848-849 990-993 W Potencia aparente trifásica Pd_kVAIII 337 84A-84B 994-997 VA Corriente trifásica (promedio) Pd_LAVG 338 84C-84D 998-99B mA Corriente fase 1 Pd_I1 339 84E-84F 99C-99F mA Corriente fase 2 Pd_I2 340 850-851 9A0-9A3 mA Corriente fase 3 Pd_I3 341 852-853 9A4-9A7 mA TARIFA 8 ////////////////////////////////////	TARIFA 7					
Potencia aparente trifásica Pd_kVAIII 337 84A-84B 994-997 VA Corriente trifásica (promedio) Pd_I_AVG 338 84C-84D 998-99B mA Corriente fase 1 Pd_I1 339 84E-84F 99C-99F mA Corriente fase 2 Pd_I2 340 850-851 9A0-9A3 mA Corriente fase 3 Pd_I3 341 852-853 9A4-9A7 mA TARIFA 8 Yatta and the state and th	Potencia activa trifásica	Pd_kWIII	336	848-849	990-993	W
Corriente trifásica (promedio) Pd_I_AVG 338 84C-84D 998-99B mA Corriente fase 1 Pd_I1 339 84E-84F 99C-99F mA Corriente fase 2 Pd_I2 340 850-851 9A0-9A3 mA Corriente fase 3 Pd_I3 341 852-853 9A4-9A7 mA Corriente fase 3 Pd_I3 341 852-853 9A4-9A7 mA TARIFA 8 Potencia activa trifásica Pd_kWIII 342 854-855 9A8-9AB W Potencia aparente trifásica Pd_kVAIII 343 856-857 9AC-9AF VA Corriente fase 1 Pd_I1 345 85A-85B 9B4-9B7 mA Corriente fase 1 Pd_I1 345 85A-85B 9B4-9B7 mA Corriente fase 2 Pd_I2 346 85C-85D 9B8-9BB mA Corriente fase 3 Pd_I3 347 85E-85F 9BC-9BF mA Corriente fase 3 Pd_kWIII 348 860-861 9C0-9C3 <td>Potencia aparente trifásica</td> <td>Pd_kVAIII</td> <td>337</td> <td>84A-84B</td> <td>994-997</td> <td>VA</td>	Potencia aparente trifásica	Pd_kVAIII	337	84A-84B	994-997	VA
Corriente fase 1 Pd_I1 339 84E-84F 99C-99F mA Corriente fase 2 Pd_I2 340 850-851 9A0-9A3 mA Corriente fase 3 Pd_I3 341 852-853 9A4-9A7 mA TARIFA 8 Potencia activa trifásica Pd_kWIII 342 854-855 9A8-9AB W Potencia aparente trifásica Pd_kVAIII 343 856-857 9AC-9AF VA Corriente fase 1 Pd_IAVG 344 858-859 9B0-9B3 mA Corriente fase 1 Pd_I1 345 85A-85B 9B4-9B7 mA Corriente fase 2 Pd_I2 346 85C-85D 9B8-9BB mA Corriente fase 3 Pd_I3 347 85E-85F 9BC-9BF mA Corriente fase 3 Pd_KWIII 348 860-861 9C0-9C3 W Potencia aparente trifásica Pd_kWIII 348 860-861 9C0-9C3 W Potencia aparente trifásica Pd_kVAIIII 349 862-863 <t< td=""><td>Corriente trifásica (promedio)</td><td>Pd_I_AVG</td><td>338</td><td>84C-84D</td><td>998-99B</td><td>mA</td></t<>	Corriente trifásica (promedio)	Pd_I_AVG	338	84C-84D	998-99B	mA
Corriente fase 2 Pd_I2 340 850-851 9A0-9A3 mA Corriente fase 3 Pd_I3 341 852-853 9A4-9A7 mA TARIFA 8 Potencia activa trifásica Pd_kWIII 342 854-855 9A8-9AB W Potencia aparente trifásica Pd_kVAIII 343 856-857 9AC-9AF VA Corriente trifásica (promedio) Pd_I_AVG 344 858-859 9B0-9B3 mA Corriente fase 1 Pd_I1 345 85A-85B 9B4-9B7 mA Corriente fase 2 Pd_I2 346 85C-85D 9B8-9BB mA Corriente fase 3 Pd_I3 347 85E-85F 9BC-9BF mA Corriente fase 3 Pd_kWIII 348 860-861 9C0-9C3 W Potencia aparente trifásica Pd_kVAIII 349 862-863 9C4-9C7 VA Corriente fase 1 Pd_kVAIII 349 862-863 9C4-9C7 VA Corriente fase 1 Pd_IAVG 350 864-865	Corriente fase 1	Pd_l1	339	84E-84F	99C-99F	mA
Corriente fase 3 Pd_I3 341 852-853 9A4-9A7 mA TARIFA 8 Potencia activa trifásica Pd_kWIII 342 854-855 9A8-9AB W Potencia aparente trifásica Pd_kVAIII 343 856-857 9AC-9AF VA Corriente trifásica (promedio) Pd_IAVG 344 858-859 9B0-9B3 mA Corriente fase 1 Pd_I1 345 85A-85B 9B4-9B7 mA Corriente fase 2 Pd_I2 346 85C-85D 9B8-9BB mA Corriente fase 3 Pd_I3 347 85E-85F 9BC-9BF mA Corriente fase 3 Pd_kWIII 348 860-861 9C0-9C3 W Potencia activa trifásica Pd_kVAIII 349 862-863 9C4-9C7 VA Corriente trifásica (promedio) Pd_LAVG 350 864-865 9C8-9CB mA Corriente fase 1 Pd_I1 351 866-867 9CC-9CF mA Corriente fase 2 Pd_I2 352 868-869 </td <td>Corriente fase 2</td> <td>Pd_l2</td> <td>340</td> <td>850-851</td> <td>9A0-9A3</td> <td>mA</td>	Corriente fase 2	Pd_l2	340	850-851	9A0-9A3	mA
TARIFA 8 Potencia activa trifásica Pd_kWIII 342 854-855 9A8-9AB W Potencia aparente trifásica Pd_kVAIII 343 856-857 9AC-9AF VA Corriente trifásica (promedio) Pd_I_AVG 344 858-859 9B0-9B3 mA Corriente fase 1 Pd_I1 345 85A-85B 9B4-9B7 mA Corriente fase 2 Pd_I2 346 85C-85D 9B8-9BB mA Corriente fase 3 Pd_I3 347 85E-85F 9BC-9BF mA Corriente fase 3 Pd_kWIII 348 860-861 9C0-9C3 W Potencia activa trifásica Pd_kVAIII 349 862-863 9C4-9C7 VA Corriente trifásica (promedio) Pd_kVAIII 349 862-863 9C4-9C7 VA Corriente fase 1 Pd_IAVG 350 864-865 9C8-9CB mA Corriente fase 1 Pd_I1 351 866-867 9CC-9CF mA Corriente fase 2 Pd_I2 352 <td>Corriente fase 3</td> <td>Pd_I3</td> <td>341</td> <td>852-853</td> <td>9A4-9A7</td> <td>mA</td>	Corriente fase 3	Pd_I3	341	852-853	9A4-9A7	mA
Potencia activa trifásica Pd_kWIII 342 854-855 9A8-9AB W Potencia aparente trifásica Pd_kVAIII 343 856-857 9AC-9AF VA Corriente trifásica (promedio) Pd_IAVG 344 858-859 9B0-9B3 mA Corriente fase 1 Pd_I1 345 85A-85B 9B4-9B7 mA Corriente fase 2 Pd_I2 346 85C-85D 9B8-9BB mA Corriente fase 3 Pd_I3 347 85E-85F 9BC-9BF mA TARIFA 9 Pd_kWIII 348 860-861 9C0-9C3 W Potencia activa trifásica Pd_kVAIII 349 862-863 9C4-9C7 VA Corriente trifásica (promedio) Pd_kVAIII 349 862-863 9C4-9C7 VA Corriente fase 1 Pd_IAVG 350 864-865 9C8-9CB mA Corriente fase 1 Pd_I1 351 866-867 9CC-9CF mA Corriente fase 2 Pd_I2 352 868	TARIFA 8					
Potencia aparente trifásicaPd_kVAIII343856-8579AC-9AFVACorriente trifásica (promedio)Pd_I_AVG344858-8599B0-9B3mACorriente fase 1Pd_I134585A-85B9B4-9B7mACorriente fase 2Pd_I234685C-85D9B8-9BBmACorriente fase 3Pd_I334785E-85F9BC-9BFmATARIFA 9Potencia activa trifásicaPd_kWIII348860-8619C0-9C3WPotencia aparente trifásicaPd_kVAIII349862-8639C4-9C7VACorriente fase 1Pd_IAVG350864-8659C8-9CBmACorriente fase 2Pd_I1351866-8679CC-9CFmACorriente fase 3Pd_I2352868-8699D0-9D3mACorriente fase 3Pd_I335386A-86B9D4-9D7mA	Potencia activa trifásica	Pd_kWIII	342	854-855	9A8-9AB	W
Corriente trifásica (promedio) Pd_I_AVG 344 858-859 9B0-9B3 mA Corriente fase 1 Pd_I1 345 85A-85B 9B4-9B7 mA Corriente fase 2 Pd_I2 346 85C-85D 9B8-9BB mA Corriente fase 3 Pd_I3 347 85E-85F 9BC-9BF mA Corriente fase 3 Pd_I3 347 85E-85F 9BC-9BF mA TARIFA 9 Potencia activa trifásica Pd_kWIII 348 860-861 9C0-9C3 W Potencia aparente trifásica Pd_kVAIII 349 862-863 9C4-9C7 VA Corriente trifásica (promedio) Pd_I_AVG 350 864-865 9C8-9CB mA Corriente fase 1 Pd_I1 351 866-867 9CC-9CF mA Corriente fase 2 Pd_I2 352 868-869 9D0-9D3 mA Corriente fase 3 Pd_I3 353 86A-86B 9D4-9D7 mA	Potencia aparente trifásica	Pd_kVAIII	343	856-857	9AC-9AF	VA
Corriente fase 1 Pd_I1 345 85A-85B 9B4-9B7 mA Corriente fase 2 Pd_I2 346 85C-85D 9B8-9BB mA Corriente fase 3 Pd_I3 347 85E-85F 9BC-9BF mA TARIFA 9 Potencia activa trifásica Pd_kWIII 348 860-861 9C0-9C3 W Potencia aparente trifásica Pd_kVAIII 349 862-863 9C4-9C7 VA Corriente fase 1 Pd_IAVG 350 864-865 9C8-9CB mA Corriente fase 1 Pd_I1 351 866-867 9CC-9CF mA Corriente fase 2 Pd_I2 352 868-869 9D0-9D3 mA Corriente fase 3 Pd_I3 353 86A-86B 9D4-9D7 mA	Corriente trifásica (promedio)	Pd_I_AVG	344	858-859	9B0-9B3	mA
Corriente fase 2 Pd_I2 346 85C-85D 9B8-9BB mA Corriente fase 3 Pd_I3 347 85E-85F 9BC-9BF mA TARIFA 9 Potencia activa trifásica Pd_kWIII 348 860-861 9C0-9C3 W Potencia aparente trifásica Pd_kVAIII 349 862-863 9C4-9C7 VA Corriente trifásica (promedio) Pd_LAVG 350 864-865 9C8-9CB mA Corriente fase 1 Pd_I1 351 866-867 9CC-9CF mA Corriente fase 2 Pd_I2 352 868-869 9D0-9D3 mA Corriente fase 3 Pd_I3 353 86A-86B 9D4-9D7 mA	Corriente fase 1	Pd_I1	345	85A-85B	9B4-9B7	mA
Corriente fase 3Pd_I334785E-85F9BC-9BFmATARIFA 9Potencia activa trifásicaPd_kWIII348860-8619C0-9C3WPotencia aparente trifásicaPd_kVAIII349862-8639C4-9C7VACorriente trifásica (promedio)Pd_I_AVG350864-8659C8-9CBmACorriente fase 1Pd_I1351866-8679CC-9CFmACorriente fase 2Pd_I2352868-8699D0-9D3mACorriente fase 3Pd_I335386A-86B9D4-9D7mA	Corriente fase 2	Pd_l2	346	85C-85D	9B8-9BB	mA
TARIFA 9Potencia activa trifásicaPd_kWIII348860-8619C0-9C3WPotencia aparente trifásicaPd_kVAIII349862-8639C4-9C7VACorriente trifásica (promedio)Pd_I_AVG350864-8659C8-9CBmACorriente fase 1Pd_I1351866-8679CC-9CFmACorriente fase 2Pd_I2352868-8699D0-9D3mACorriente fase 3Pd_I335386A-86B9D4-9D7mA	Corriente fase 3	Pd_I3	347	85E-85F	9BC-9BF	mA
Potencia activa trifásicaPd_kWIII348860-8619C0-9C3WPotencia aparente trifásicaPd_kVAIII349862-8639C4-9C7VACorriente trifásica (promedio)Pd_I_AVG350864-8659C8-9CBmACorriente fase 1Pd_I1351866-8679CC-9CFmACorriente fase 2Pd_I2352868-8699D0-9D3mACorriente fase 3Pd_I335386A-86B9D4-9D7mA	TARIFA 9					
Potencia aparente trifásica Pd_kVAIII 349 862-863 9C4-9C7 VA Corriente trifásica (promedio) Pd_I_AVG 350 864-865 9C8-9CB mA Corriente fase 1 Pd_I1 351 866-867 9CC-9CF mA Corriente fase 2 Pd_I2 352 868-869 9D0-9D3 mA Corriente fase 3 Pd_I3 353 86A-86B 9D4-9D7 mA	Potencia activa trifásica	Pd_kWIII	348	860-861	9C0-9C3	W
Corriente trifásica (promedio) Pd_I_AVG 350 864-865 9C8-9CB mA Corriente fase 1 Pd_I1 351 866-867 9CC-9CF mA Corriente fase 2 Pd_I2 352 868-869 9D0-9D3 mA Corriente fase 3 Pd_I3 353 86A-86B 9D4-9D7 mA	Potencia aparente trifásica	Pd_kVAIII	349	862-863	9C4-9C7	VA
Corriente fase 1 Pd_I1 351 866-867 9CC-9CF mA Corriente fase 2 Pd_I2 352 868-869 9D0-9D3 mA Corriente fase 3 Pd_I3 353 86A-86B 9D4-9D7 mA	Corriente trifásica (promedio)	Pd_I_AVG	350	864-865	9C8-9CB	mA
Corriente fase 2 Pd_I2 352 868-869 9D0-9D3 mA Corriente fase 3 Pd_I3 353 86A-86B 9D4-9D7 mA	Corriente fase 1	Pd_I1	351	866-867	9CC-9CF	mA
Corriente fase 3 Pd_I3 353 86A-86B 9D4-9D7 mA	Corriente fase 2	Pd_12	352	868-869	9D0-9D3	mA
	Corriente fase 3	Pd_I3	353	86A-86B	9D4-9D7	mA

CIRCUTOR

8.3.6. VARIABLES DE ARMÓNICOS DE TENSIÓN

VARIABLE	SÍMBOLO	V1	V2	V 3	VN	UNIDAD
Fundamental	V_fund	0A28-0A29	0A5B-0A5C	0A8E-0A8F	0AC1-0AC2	Vx10
Armónico 2	H2	0A2A	0A5D	0A90	0AC3	%x10
Armónico 3	H3	0A2B	0A5E	0A91	0AC4	%x10
Armónico 4	H4	0A2C	0A5F	0A92	0AC5	%x10
Armónico 5	H5	0A2D	0A60	0A93	0AC6	%x10
Armónico 6	H6	0A2E	0A61	0A94	0AC7	%x10
Armónico 7	H7	0A2F	0A62	0A95	0AC8	%x10
Armónico 8	H8	0A30	0A63	0A96	0AC9	%x10
Armónico 9	H9	0A31	0A64	0A97	0ACA	%x10
Armónico 10	H10	0A32	0A65	0A98	0ACB	%x10
Armónico 11	H11	0A33	0A66	0A99	0ACC	%x10
Armónico 12	H12	0A34	0A67	0A9A	0ACD	%x10
Armónico 13	H13	0A35	0A68	0A9B	0ACE	%x10
Armónico 14	H14	0A36	0A69	0A9C	0ACF	%x10
Armónico 15	H15	0A37	0A6A	0A9D	0AD0	%x10
Armónico 16	H16	0A38	0A6B	0A9E	0AD1	%x10
Armónico 17	H17	0A39	0A6C	0A9F	0AD2	%x10
Armónico 18	H18	0A3A	0A6D	0AA0	0AD3	%x10
Armónico 19	H19	0A3B	0A6E	0AA1	0AD4	%x10
Armónico 20	H20	0A3C	0A6F	0AA2	0AD5	%x10
Armónico 21	H21	0A3D	0A70	0AA3	0AD6	%x10
Armónico 22	H22	0A3E	0A71	0AA4	0AD7	%x10
Armónico 23	H23	0A3F	0A72	0AA5	0AD8	%x10
Armónico 24	H24	0A40	0A73	0AA6	0AD9	%x10
Armónico 25	H25	0A41	0A74	0AA7	0ADA	%x10
Armónico 26	H26	0A42	0A75	0AA8	0ADB	%x10
Armónico 27	H27	0A43	0A76	0AA9	0ADC	%x10
Armónico 28	H28	0A44	0A77	0AAA	0ADD	%x10
Armónico 29	H29	0A45	0A78	0AAB	0ADE	%x10
Armónico 30	H30	0A46	0A79	0AAC	0ADF	%x10
Armónico 31	H31	0A47	0A7A	0AAD	0AE0	%x10
Armónico 32	H32	0A48	0A7B	0AAE	0AE1	%x10
Armónico 33	H33	0A49	0A7C	0AAF	0AE2	%x10
Armónico 34	H34	0A4A	0A7D	0AB0	0AE3	%x10
Armónico 35	H35	0A4B	0A7E	0AB1	0AE4	%x10
Armónico 36	H36	0A4C	0A7F	0AB2	0AE5	%x10
Armónico 37	H37	0A4D	0A80	0AB3	0AE6	%x10
Armónico 38	H38	0A4E	0A81	0AB4	0AE7	%x10
Armónico 39	H39	0A4F	0A82	0AB5	0AE8	%x10
Armónico 40	H40	0A50	0A83	0AB6	0AE9	%x10
Armónico 41	H41	0A51	0A84	0AB7	0AEA	%x10

Armónico 42	H42	0A52	0A85	0AB8	0AEB	%x10
Armónico 43	H43	0A53	0A86	0AB9	0AEC	%x10
Armónico 44	H44	0A54	0A87	0ABA	0AED	%x10
Armónico 45	H45	0A55	0A88	0ABB	0AEE	%x10
Armónico 46	H46	0A56	0A89	0ABC	0AEF	%x10
Armónico 47	H47	0A57	0A8A	0ABD	0AF0	%x10
Armónico 48	H48	0A58	0A8B	0ABE	0AF1	%x10
Armónico 49	H49	0A59	0A8C	0ABF	0AF2	%x10
Armónico 50	H50	0A5A	0A8D	0AC0	0AF3	%x10

La variable de la fundamental debe pedirse independiente al resto de las variables de armónicos de tensión.

8.3.7. VARIABLES DE ARMÓNICOS DE CORRIENTE

VARIABLE	SÍMBOLO	l1	12	13	IN	UNIDAD
Fundamental	I_fund	0B54-0B55	0B87-0B88	0BBA-0BBB	0BED-0BEE	mA
Armónico 2	H2	0B56	0B89	0BBC	0BEF	%x10
Armónico 3	H3	0B57	0B8A	0BBD	0BF0	%x10
Armónico 4	H4	0B58	0B8B	0BBE	0BF1	%x10
Armónico 5	H5	0B59	0B8C	0BBF	0BF2	%x10
Armónico 6	H6	0B5A	0B8D	0BC0	0BF3	%x10
Armónico 7	H7	0B5B	0B8E	0BC1	0BF4	%x10
Armónico 8	H8	0B5C	0B8F	0BC2	0BF5	%x10
Armónico 9	H9	0B5D	0B90	0BC3	0BF6	%x10
Armónico 10	H10	0B5E	0B91	0BC4	0BF7	%x10
Armónico 11	H11	0B5F	0B92	0BC5	0BF8	%x10
Armónico 12	H12	0B60	0B93	0BC6	0BF9	%x10
Armónico 13	H13	0B61	0B94	0BC7	0BFA	%x10
Armónico 14	H14	0B62	0B95	0BC8	0BFB	%x10
Armónico 15	H15	0B63	0B96	0BC9	0BFC	%x10
Armónico 16	H16	0B64	0B97	0BCA	0BFD	%x10
Armónico 17	H17	0B65	0B98	0BCB	0BFE	%x10
Armónico 18	H18	0B66	0B99	0BCC	0BFF	%x10
Armónico 19	H19	0B67	0B9A	0BCD	0C00	%x10
Armónico 20	H20	0B68	0B9B	0BCE	0C01	%x10
Armónico 21	H21	0B69	0B9C	0BCF	0C02	%x10
Armónico 22	H22	0B6A	0B9D	0BD0	0C03	%x10
Armónico 23	H23	0B6B	0B9E	0BD1	0C04	%x10
Armónico 24	H24	0B6C	0B9F	0BD2	0C05	%x10

Armónico 25	H25	0B6D	0BA0	0BD3	0C06	%x10
Armónico 26	H26	0B6E	0BA1	0BD4	0C07	%x10
Armónico 27	H27	0B6F	0BA2	0BD5	0C08	%x10
Armónico 28	H28	0B70	0BA3	0BD6	0C09	%x10
Armónico 29	H29	0B71	0BA4	0BD7	0C0A	%x10
Armónico 30	H30	0B72	0BA5	0BD8	0C0B	%x10
Armónico 31	H31	0B73	0BA6	0BD9	0C0C	%x10
Armónico 32	H32	0B74	0BA7	0BDA	0C0D	%x10
Armónico 33	H33	0B75	0BA8	0BDB	0C0E	%x10
Armónico 34	H34	0B76	0BA9	0BDC	0C0F	%x10
Armónico 35	H35	0B77	0BAA	0BDD	0C10	%x10
Armónico 36	H36	0B78	0BAB	0BDE	0C11	%x10
Armónico 37	H37	0B79	0BAC	0BDF	0C12	%x10
Armónico 38	H38	0B7A	0BAD	0BE0	0C13	%x10
Armónico 39	H39	0B7B	0BAE	0BE1	0C14	%x10
Armónico 40	H40	0B7C	0BAF	0BE2	0C15	%x10
Armónico 41	H41	0B7D	0BB0	0BE3	0C16	%x10
Armónico 42	H42	0B7E	0BB1	0BE4	0C17	%x10
Armónico 43	H43	0B7F	0BB2	0BE5	0C18	%x10
Armónico 44	H44	0B80	0BB3	0BE6	0C19	%x10
Armónico 45	H45	0B81	0BB4	0BE7	0C1A	%x10
Armónico 46	H46	0B82	0BB5	0BE8	0C1B	%x10
Armónico 47	H47	0B83	0BB6	0BE9	0C1C	%x10
Armónico 48	H48	0B84	0BB7	0BEA	0C1D	%x10
Armónico 49	H49	0B85	0BB8	0BEB	0C1E	%x10
Armónico 50	H50	0B86	0BB9	0BEC	0C1F	%x10

La variable de la fundamental debe pedirse independiente al resto de las variables de armónicos de corriente.

8.3.8. VARIABLES TARJETAS DE EXPANSIÓN ENTRADAS DIGITALES

POS. TARJETA	VARIABLE	SÍMBOLO	CÓDIGO	DIRECC. MODBUS
	Contador entrada 1	IN_1001	400	0C80-0C81
	Contador entrada 2	IN_1002	401	0C82-0C83
	Contador entrada 3	IN_1003	402	0C84-0C85
	Contador entrada 4	IN_1004	403	0C86-0C87
	Contador entrada 5	IN_1005	404	0C88-0C89
	Contador entrada 6	IN_1006	405	0C8A-0C8B
	Contador entrada 7	IN_1007	406	0C8C-0C8D
	Contador entrada 8	IN_1008	407	0C8E-0C8F

	Contador entrada 1	IN_2001	408	0C90-0C91
	Contador entrada 2	IN_2002	409	0C92-0C93
	Contador entrada 3	IN_2003	410	0C94-0C95
	Contador entrada 4	IN_2004	411	0C96-0C97
	Contador entrada 5	IN_2005	412	0C98-0C99
	Contador entrada 6	IN_2006	413	0C9A-0C9B
	Contador entrada 7	IN_2007	414	0C9C-0C9D
	Contador entrada 8	IN_2008	415	0C9E-0C9F
	Contador entrada 1	IN_3001	416	0CA0-0CA1
	Contador entrada 2	IN_3002	417	0CA2-0CA3
	Contador entrada 3	IN_3003	418	0CA4-0CA5
	Contador entrada 4	IN_3004	419	0CA6-0CA7
IARJE IA 3	Contador entrada 5	IN_3005	420	0CA8-0CA9
	Contador entrada 6	IN_3006	421	0CAA-0CAB
	Contador entrada 7	IN_3007	422	0CAC-0CAD
	Contador entrada 8	IN_3008	423	0CAE-0CAF

8.3.9. VARIABLES TARJETAS DE EXPANSIÓN ENTRADAS ANALÓGICAS

POS. TARJETA	VARIABLE	SÍMBOLO	CÓDIGO	DIRECC. MODBUS
	Entrada analógica 1	AD_1001	424	0CB2-0CB3
	Entrada analógica 2	AD_1002	425	0CB4-0CB5
	Entrada analógica 3	AD_1003	426	0CB6-0CB7
	Entrada analógica 4	AD_1004	427	0CB8-0CB9
	Entrada analógica 5	AD_1005	428	0CBA-0CBB
	Entrada analógica 6	AD_1006	429	0CBC-0CBD
	Entrada analógica 7	AD_1007	430	0CBE-0CBF
	Entrada analógica 8	AD_1008	431	0CC0-0CC1
	Entrada analógica 1	AD_2001	432	0CC2-0CC3
	Entrada analógica 2	AD_2002	433	0CC4-0CC5
	Entrada analógica 3	AD_2003	434	0CC6-0CC7
	Entrada analógica 4	AD_2004	435	0CC8-0CC9
IARJE IA Z	Entrada analógica 5	AD_2005	436	0CCA-0CCB
	Entrada analógica 6	AD_2006	437	0CCC-0CCD
	Entrada analógica 7	AD_2007	438	0CCE-0CCF
	Entrada analógica 8	AD_2008	439	0CD0-0CD1
	Entrada analógica 1	AD_3001	440	0CD2-0CD3
	Entrada analógica 2	AD_3002	441	0CD4-0CD5
	Entrada analógica 3	AD_3003	442	0CD6-0CD7
	Entrada analógica 4	AD_3004	443	0CD8-0CD9
IARJETA 3	Entrada analógica 5	AD_3005	444	0CDA-0CDB
	Entrada analógica 6	AD_3006	445	0CDC-0CDD
	Entrada analógica 7	AD_3007	446	0CDE-0CDF
	Entrada analógica 8	AD_3008	447	0CE0-0CE1

8.4. CARACTERISTICAS RED RS-485

La conexión RS-485 se realizará con cable de comunicación de par trenzado flexible con malla de apantallamiento, de tres hilos mínimo, con una distancia máxima entre el master y el último periférico de 1.200 metros

Para conexiones RS-485 cortas (< 5 m) puede emplearse cable paralelo sin apantallar. Por el contrario, en conexiones de mayor longitud o en ambientes con fuerte ruido eléctrico, emplear siempre cable trenzado y apantallado.

CABLE RECOMENDADO:

Cable flexible categoria 5 de 2 conductores x 0,25 mm2 (AWG 23) de cable no rígido más la malla. La malla debe conectarse a tierra en uno de los extremos para descargar el ruido que en ella pueda inducirse. Este cable podría ser también con sección de conductores de 0,22 mm² (AWG 24), aunque el 0,25 mm² (o superior) es más recomendado.

N° PERIFÉRICOS:

El número máximo de periféricos que podrán colocarse en la red es de 32, aunque con la utilización de amplificadores podrá prolongarse el bus 1.200 metros más.

Otras consideraciones:

- Instalar el BUS RS-485 alejado de conductores eléctricos de potencia.
- En instalaciones con longitudes de BUS RS-485 largas, es aconsejable instalar elementos protectores de sobretensiones en el BUS (tensiones inducidas en el BUS por descargas afmosféricas o diferencias de potencial de tierras).
- No realizar un conexionado en estrella para el BUS RS-485, es decir, no realizar ramificaciones del bus. La conexión entre un grupo de periféricos 485 y el BUS debe realizarse lo más corta posible.
- El GND de los analizadores no debe conectarse en el bus 485, es decir, no se conectan los GND de equipos entre sí, para evitar circulaciones de corriente entre masas a diferentes potenciales.
- El GND de los equipos no se debe conectar a la malla del cable, ni tampoco al Tierra de la instalación.

9. MANTENIMIENTO

9.1 MANTENIMIENTO DEL EQUIPO

CVMk2 no precisa mantenimiento ya que se trata de un instrumento completamente estático, no obstante se recomienda revisar el correcto apriete de los bornes.

Antes de manipular el equipo, para ampliar con tarjetas de expansión, modificar conexionado o sustitución, debe quitar la alimentación del **CVMk2**. Manipular el equipo mientas está alimentado es peligroso para la persona y para el equipo.

10. CARACTERÍSTICAS

10.1 NORMATIVAS

- Marcado CE.
- CAT III 300 / 520 V c.a. según norma EN-61010.
- Potección frente a choque eléctrico por doble aislamiento con clase II.
- Montaje en carril DIN 46227 según norma EN 50022.
- Precisión energía según norma IEC 62053-22

10.2 CARACTERÍSTICAS TÉCNICAS

ENTRADAS DE TENSIÓN					
Tensión mínima medible	10 V c.a.				
Margan da madida	del 5 al 120% de <i>U</i> n para <i>U</i> n = 300 Vac (f-N)				
Margen de medida	del 5 al 120% de <i>U</i> n para <i>U</i> n = 520 Vac (f-f)				
Frecuencia	4565 Hz				
Tensión máxima medida	360 V c.a.				
Sobretensión admisible	750 V c.a.				
Consumo máximo (corriente limitada)	< 0,6 V•A				
ENTRADAS DE CORRIENTE					
Corriente mínima medible	40 mA				
Rango de medida	del 1 al 120% de <i>I</i> n para <i>I</i> n = 5 A				
Segundario de los TC (In)	1 o 5 A				
Corriente primaria medida	Programable < 30.000 A				
Sobrecarga admisible	6 A permanente, 100 A t < 1 s				
Consumo (/5 y/1)	< 0,45 V•A				
ALIMENTACIÓN AUXILIAR					
Alimentación	85 a 265 V c.a. (5060Hz) (consumo < 30 VA)				
Aimentación	100 a 300 V c.c. (consumo < 25 W)				
ENTRADAS DIGITALES					
Tensión de uso	24 V c.c. ± 20 %				
Anchura mínima de la señal	40 ms				
Consumo (por entrada)	< 0,5 W				
SALIDAS DE IMPULSO DIGITALES	3				
Тіро	Optoacoplado				
Tensión de trabajo	150 VDC / 250 VAC				
Corriente de trabajo	100 mA				
Potencia máxima	0,8 W				
Máxima Ron	25 Ω				
SALIDAS DE RELÉ					
Tensión nominal	230 VAC / 125 VDC				
Corriente nominal	6 AAC / 1,5 ADC				
Carga máxima VAC	250 VAC / 6 AAC				
Carga máxima VDC	30 VDC / 6 ADC				
Carga mínima	1 VAC / 1mA				
SALIDA ANALÓGICA					
Escala	de 0 20 mA ó 4 20 mA				
Carga máxima admisible	300 Ω				
Tiempo de respuesta	< 2 s				

Puntos de salida	4.000
COMUNICACIONES	
Protocolo de red	RS-485
Protocolo de comunicación	ModBus/RTU
Velocidad (configurable)	9600, 19200, 38400, 57600 baud
Paridad	par, impar o sin paridad
Bits de stop	1 o 2
SALIDA ETHERNET	
Protocolo de red	ETHERNET RJ-45
Protocolo de comunicación	Modbus/TCP
Velocidad	Compatible 10baseT / 100baseTx
ENTORNO	
Temperatura de funcionamiento	- 10+ 40 °C
Temperatura de almacenamiento	- 20 + 65°C
Humedad relativa	95% sin condensación
Categoría de instalación	CAT III según CEI 61010
Grado de contaminación	2 según IEC 61010
Índice de protección	IP51 frontal - IP20 parte posterior
MECÁNICA	
Conexión	Bornero de tornillos para hilos rígido de 2,5 mm (4,5 mm2) o flexibles . (AWG 11)
NORMATIVAS	
EMC	61000-4-2, 61000-4-3, 61000-4-11, 61000-4-4, 61000-4-5
	Listed for industrial control equipment miscellaneous device. FILE: NMTR E227534

PRECISIÓN MODELO 405	(% LECTURA) ± (DIGITO)
Corriente fases	± 0,5% ± 1 desde 10% al 120% de <i>I</i> n
Corriente Neutro	± 0,5% ± 1 desde 10% al 120% de <i>I</i> n
Tensiones	± 0,5% ± 1 desde 20% al 120% de <i>U</i> n
Potencia activa P	± 0,5% ± 1 desde 10% al 120% de <i>I</i> n
Potencia reactiva Q	± 0,5% del 10% al 120% de <i>I</i> n
Potencia aparente S	± 0,5% del 10% al 120% de <i>I</i> n
Frecuencia F	± 0,01 Hz desde 45 a 65 Hz
Energía activa	± 0,5%
Energía reactiva	± 0,5%

PRECISIÓN MODELO 402	(% LECTURA) ± (DIGITO)
Corriente fases	± 0,2% ± 2 desde 10% al 120% de <i>I</i> n
Corriente neutro	± 0,5% ± 1 desde 10% al 120% de <i>I</i> n
Tensiones	± 0,2% ± 2 desde 20% al 120% de <i>U</i> n
Potencia activa P	± 0,2% ± 1 desde10 % al 120% de <i>I</i> n
Potencia reactiva Q	± 0,5% desde 10% al 120% de <i>I</i> n
Potencia aparente S	± 0,5% desde 10% al 120% de <i>I</i> n
Frecuencia F	± 0,01 Hz de 45 a 65 Hz
Energía activa	± 0,2%
Energía reactiva	± 0,5%

10.3 OTROS CONCEPTOS

Para realizar los cálculos de calidad de red que realiza el **CVMk2** se aplica el método de las componentes simétricas, ideado por Fortescue y Stokvis.

Este método compara de forma vectorial los fasores, teniendo en cuenta el desfase y el módulo. Se utiliza tanto en tensión como en corriente.

Para indicar el grado de desequilibrio de un sistema, se usan dos coeficientes, el coeficiente de desequilibrio y el coeficiente de asimetría.

10.3.1 COEFICIENTE DE DESEQUILIBRIO (KD)

El coeficiente de desequilibrio (Kd) es la relación entre las amplitudes de las componentes de la secuencia directa e inversa.

$$k_a\% = \frac{|U_i|}{|U_a|} \cdot 100$$

10.3.2 COEFICIENTE DE ASIMETRÍA (KA)

El coeficiente de asimetría (Ka) es la relación entre las amplitudes de las componentes de la secuencia directa y homopolar. Las componentes de secuencia homopolar són cero si no existe neutro.

$$k_a\% = \frac{|U_0|}{|U_d|} 100$$

10.3.3 FLICKER

Se entiende por flicker la variación del valor eficaz o amplitud de la tensión en un rango menor al 10% del valor nominal. Esta variación de la amplitud de la tensión produce una fluctuación del flujo luminoso en lámparas, induciendo a su vez la impresión de inestabilidad en la sensación visual (efecto de parpadeo visual).

El flicker depende fundamentalmente de la amplitud, frecuencia y duración de las variaciones de la tensión y se expresa como el cambio de la tensión rms dividido por la tensión promedio rms.

Ocurre en un rango de frecuencias que va desde 0,5 a 25 Hz, demostrándose a través de pruebas, que el ojo es muy sensible a frecuencias moduladoras en el rango de 8 a 10 Hz con variaciones de tensión en el rango de 0,3 a 0,4 % de la magnitud a estas frecuencias.

La medida se realiza mediante un parámetro llamado perceptibilidad (P) :

- Para tiempos cortos (10 minutos) se llama Pst.

$$\frac{\Delta U}{U}$$

- Para tiempos largos (2 horas) se llama PLT.

$$Plt = \frac{\sqrt[3]{\sum_{i=1}^{12} P_{sti}^3}}{12}$$

Se considera un flicker perceptible para $PST > 1 \vee PLT > 0.8$.

10.3.4. FACTOR K

Se entiende por factor k, un factor de reducción de potencia de los transformadores. Para el cálculo del factor k, se contemplan las pérdidas que generan los armónicos.

Es siempre superior a la unidad en instalaciones con cargas no lineales.

$$\boldsymbol{k} = \sqrt{1 + \frac{e}{1 + e} \cdot \left(\frac{I_1}{I_{e^{f}}}\right)^2 \cdot \sum_{n=2}^{40} n^{q} \cdot \left(\frac{I_n}{I_1}\right)^2}$$

e : representa la relación entre las pérdidas en el cobre y las pérdidas en el hierro del transformador. Este valor puede obtenerse de los datos de ensayo del transformador o en su defecto puede tomarse el valor aproximado de 0,3.

q : exponente de valor entre 1,7 ó 1,8.

10.3.5. FACTOR DE CRESTA

El Factor Cresta es igual a la amplitud del pico de la forma de onda dividida por el valor RMS. El propósito del cálculo del factor cresta es dar al analista una rápida idea de que tanto impacto está ocurriendo en la forma de onda. El impacto está continuamente asociado el desgaste del balero de rodillos, cavitación y desgaste de los dientes del engranaje, etc..

$$C.F = rac{U_{pic}}{U_{rms}}$$

El factor cresta es una de las medidas importantes del estado de la máquina y es un análisis de la forma de onda que no sería visible únicamente con el cálculo de la tasa de distorsión armónica.

En una perfecta onda sinusoidal, con una amplitud de "1", el valor RMS es igual a 0,707 y el factor cresta es entonces igual a 1,41. Una perfecta onda sinusoidal no contiene impactos y por lo tanto el factor cresta con un valor superior a 1,41 implica que hay algún grado de impacto.

<u>11. SOFTWARE</u>

11.1 POWER STUDIO SCADA.

http://powerstudio.circutor.com

El **CVMk2**, como muchos otros equipos de **CIRCUTOR, SA**, tiene los drivers implementados en el software de gestión energética Power Studio y Power Studio Scada.

Este software permite comunicar de forma permanente con el/los analizador/es de redes **CVMk2** (además de con muchas otras referencias) generar una base de datos en un pc para visualizar de forma gráfica todos los parámetros y permite configurar los equipos en tiempo real

Informació del dispositu		Dispositu				
Nombre de periféric	Model	Punt de mesura				
2	CVMk24TF-405-	Analog				
		Període de captura				
Identificador	Versió	1				
4	1.04					
Descripcio		Sincronitzar relotge				
Relació de transformació		Masinete				
No. of Concerns	Primari Secured	eriode				
volutor	/ 1	15				
		Tipus de finestra				
Conent [1	000 / 5	Llocart 💌				
Conent de neutre		📕 Reset maximetre				
Frequência nominal	Cilicul de la distorsió	Temperatura				
(∓ 50 Hz	RMS	F 70				
C 60Hz	C Fonamental	C 4				
Tailei						
Tipus de sincronisme	No	mbre de tanles				
Relatge Intern	1	<u>.</u>				
C Estados diplais	De	ta alama carvi de taifa				
	12	V07/2008 🔆 94257 🔅				

Todas las valiables del **CVMk2**, pueden visualizarse en tiempo real en el Power Studio Scada. También muestra valores máximos, mínimos y armónicos de tensión y corriente.

ms Views Gener	al .								
Previous	nt Devices	Screens	S Pap	orts 🚰 Graph	Table > Events	Proper	ties D P	viest	
linstantaneous	🔮 Maximums	4 Minimum	n y y y	oltage harmonics	Current harmonics				
		1.2	13			Lt	1.2	13	
Voltage				1	Consumed power (+)				
Phase-neutral (V)	232.29	232.62	232.87	232.59	Active 0010	16.6	16.2	15.3	48.1
Phase-phase (/)	402.60	403.22	402.67	402.83	Capacitive (kvarC)	0.0	0.0	0.0	0.0
Neutral voltage (V)	1.1.1	220	2.4	0.00	Inductive (kvarL)	1.9	2.3	1.0	6.0
Total distortion (%)	40.00	21	1.9		Apparent (kV/A)	17.7	17.5	16.4	51.7
Frequency (FL2)					Power factor	0.935	0.923	0.934	0.931
Comment .					Cosine Phi	0.993	0.909	0.993	8.992
Current						100000	100755	1000	0.000
Current (A)	76.4	75.4	70.4	74.0					
Neutral current (A)				0.0	Denerated power (-)				
	1	1.00			Active (KN)	0.0	0.0	0.0	0.0
Total distortion (%)	36.8	39.2	37.2		Capacitive (kvarC)	0.0	0.0	0.0	0.0
					Inductive (krart.)	0.0	0.0	0.0	0.0
imbalance					Apparent (KVA)	0.0	0.0	0.0	0.0
		Kd		Ka	Power factor	0.000	0.000	0.000	0.000
Voltage		0.000		0.000	Cosine Phi	0.000	0.000	0.000	0.000
Current		3.300		1.300					
Energy				1110	faximum demand consumed	i (+)			
				Sec. 1	Active power (+) (kW)				51.30
Active (kWh)		85,129.900		0.044	Active power (-) (MM)				0.0
Capacitive (kvarCh)		3.259		0.601	Apparent power (+) (KVA)				55.00
Inductive (kvarLh)		19,033.600		0.603	Apparent power (-) (NVA)				0.0
Apparent (NVNh)		98,947.100		2,716	Current (A)	79.50	01.20	76.00	78.90

Todas las valiables del **CVMk2** almacenadas en la base de datos, pueden visualizarse de forma gráfica o de tablas y exportarse a otros programas.

Power Studio y Power Studio Scada son servidores DDE, XML y OPC server *, permitiendo la exportación y comunicación con otros programas.

* OPC server requiere un módulo específico.

más de 3000 productos

Divididos en 4 divisiones, que aportan soluciones a cualquier parte del proceso de generación, transporte y distribución de la energía eléctrica

Medida

Instrumentación analógica y digital, transformadores y convertidores de medida, contadores de energía, analizadores de redes portátiles y de panel, software de gestión, etc.

Protección y Control

Protección diferencial industrial, relés de protección, equipos de medida y verificación de centros de transformación, reactancias de filtrado, etc.

Quality & Metering

Contadores de energía eléctrica para tarificación, analizadores de la calidad de suministro eléctrico y accesorios para la lectura remota

Compensación de energía reactiva y filtrado de armónicos

Reguladores automáticos de energía reactiva, condensadores de potencia BT y MT, baterías automáticas, equipos para el filtrado de armónicos, etc.

http://eficienciaenergetica.circutor.es

mup.//enclemenachergetica.encutor.es

En caso de cualquier duda de funcionamiento o avería del equipo, avisar al **Servicio de Asistencia Técnica (S.A.T.)** de CIRCUTOR :

ESPAÑA: 902 449 459 INTERNACIONAL: (+34) 93 745 29 00

Asistencia técnica Departamento Posventa Vial Sant Jordi, s/n - 08232 - Viladecavalls CIRCUTOR se reserva el derecho a modificar el contenido de este manual sin previo aviso

CIRCUTOR no asume ninguna responsabilidad de cualquier daño causado a personas o materiales, debido a un uso erróneo o inapropiado de estos productos

CIRCUTOR, SA

Vial Sant Jordi, s/n - 08232 - Viladecavalls - Barcelona (Spain) - Tel. +34 93 745 29 00 - Fax +34 93 745 29 14 web: www.circutor.es - email: sat@circutor.es