725Ex
Multifunction Process Calibrator

Manual de uso

January 2005 (Spanish) Rev.1, 8/05
© 2005 Fluke Corporation, All rights reserved.
All product names are trademarks of their respective companies.
GARANTÍA LIMITADA Y LIMITACIÓN DE RESPONSABILIDAD

Todo producto de Fluke está garantizado contra defectos en los materiales y en la mano de obra en condiciones normales de utilización y mantenimiento. El periodo de garantía es de un año a partir de la fecha de despacho. Las piezas de repuesto, reparaciones y servicios están garantizados por 90 días. Esta garantía se extiende sólo al comprador original o al cliente usuario final de un revendedor autorizado por Fluke y no es válida para fusibles, baterías desechables ni para ningún producto que, en opinión de Fluke, haya sido utilizado incorrectamente, modificado, maltratado, contaminado, o sufrido daño accidental o por condiciones anormales de funcionamiento o manipulación. Fluke garantiza que el software funcionará substancialmente de acuerdo con sus especificaciones funcionales durante 90 días y que ha sido grabado correctamente en un medio magnético sin defectos. Fluke no garantiza que el software no contenga errores ni que operará permanentemente.

Los revendedores autorizados por Fluke podrán extender esta garantía solamente a los Compradores finales de productos nuevos y sin uso previo, pero carecen de autoridad para extender una garantía mayor o diferente en nombre de Fluke. El soporte técnico en garantía está disponible sólo si el producto se compró a través de un centro de distribución autorizado por Fluke o si el comprador pagó el precio internacional correspondiente. Cuando un producto comprado en un país sea enviado a otro país para su reparación, Fluke se reserva el derecho de facturar al Comprador los gastos de importación de las reparaciones/repuestos. La obligación de Fluke de acuerdo con la garantía está limitada, a discreción de Fluke, al reembolso del precio de compra, la reparación gratuita o el reemplazo de un producto defectuoso que sea devuelto a un centro de servicio autorizado de Fluke dentro del periodo de garantía. Para obtener servicio de garantía, póngase en contacto con el centro de servicio autorizado por Fluke más cercano para obtener la información correspondiente a la devolución, después envíe el producto a ese centro de servicio, con una descripción del fallo, con los portes y seguro prepagados (FOB destino). Fluke no se hace responsable de los daños ocurridos durante el transporte. Después de la reparación de garantía, el producto se devolverá al Comprador con los fletes ya pagados (FOB destino). Si Fluke determina que el problema fue debido a negligencia, mala utilización, contaminación, accidente o una condición anormal de funcionamiento o manipulación, incluidas las fallas por sobretensión causadas por el uso fuera de los valores nominales especificados para el producto, o al desgaste normal de los componentes mecánicos, Fluke preparará una estimación de los costes de reparación y obtendrá la debida autorización antes de comenzar el trabajo. Al concluir la reparación, el producto se devolverá al Comprador con los fletes ya pagados, facturándosele la reparación y los gastos de transporte (FOB en el sitio de despacho).

ESTA GARANTÍA CONSTITUYE LA ÚNICA Y EXCLUSIVA COMPENSACIÓN DEL COMPRADOR Y SUBSTITuye A TODAS LAS DEMÁS GARANTÍAS, EXPRESAS O IMPLÍCITAS, INCLUIDAS, ENTRE OTRAS, TODAS LAS GARANTÍAS IMPLÍCITAS DE COMERCIABILIDAD O IDONEIDAD PARA UN PROPÓSITO DETERMINADO. FLUKE NO SE RESPONSABILIZA DE PÉRDIDAS NI DANOS ESPECIALES, INDIRECTOS, IMPREVISTOS O CONTINGENTES, INCLUIDA LA PÉRDIDA DE DATOS, QUE SURJAN POR CUALQUIER TIPO DE CAUSA O TEORÍA. Como algunos países o estados no permiten la limitación de la duración de una garantía implícita ni la exclusión o limitación de los daños contingentes o resultantes, las limitaciones y exclusiones de esta garantía pueden no regir para todos los Compradores. Si una cláusula de esta Garantía es conceptuada no válida o inaplicable por un tribunal o otra instancia de jurisdicción competente, tal concepto no afectará la validez o aplicabilidad de cualquier otra cláusula.

Fluke Corporation
P.O. Box 9090
Everett, WA 98206-9090
E.E.U.U.

Fluke Europe B.V.
P.O. Box 1186
5602 BD Eindhoven
Holanda

Para registrar su producto en línea, visite register.fluke.com.
Contenido

<table>
<thead>
<tr>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introducción</td>
<td>1</td>
</tr>
<tr>
<td>Comunicación con Fluke</td>
<td>1</td>
</tr>
<tr>
<td>Equipo estándar</td>
<td>3</td>
</tr>
<tr>
<td>Información sobre seguridad</td>
<td>3</td>
</tr>
<tr>
<td>Áreas con peligro de explosión</td>
<td>3</td>
</tr>
<tr>
<td>Fallos y daños</td>
<td>8</td>
</tr>
<tr>
<td>Normas de seguridad</td>
<td>9</td>
</tr>
<tr>
<td>Información de certificación</td>
<td>10</td>
</tr>
<tr>
<td>Familiarización con el calibrador</td>
<td>10</td>
</tr>
<tr>
<td>Terminales de entrada y salida</td>
<td>10</td>
</tr>
<tr>
<td>Teclas</td>
<td>12</td>
</tr>
<tr>
<td>Pantalla</td>
<td>15</td>
</tr>
<tr>
<td>Funcionamiento básico</td>
<td>16</td>
</tr>
<tr>
<td>Modo Apagado automático</td>
<td>16</td>
</tr>
<tr>
<td>Ajuste del contraste</td>
<td>18</td>
</tr>
<tr>
<td>Utilización del modo Measure</td>
<td>19</td>
</tr>
<tr>
<td>Medición de parámetros eléctricos (parte superior de la pantalla)</td>
<td>19</td>
</tr>
<tr>
<td>Capítulo</td>
<td>Página</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>Medición de corriente con alimentación de lazo</td>
<td>19</td>
</tr>
<tr>
<td>Medición de parámetros eléctricos (parte inferior de la pantalla)</td>
<td>21</td>
</tr>
<tr>
<td>Medición de temperatura</td>
<td>22</td>
</tr>
<tr>
<td>Utilización de termopares</td>
<td>22</td>
</tr>
<tr>
<td>Utilización de termodetectores de resistencia (RTD)</td>
<td>25</td>
</tr>
<tr>
<td>Medición de presión</td>
<td>28</td>
</tr>
<tr>
<td>Puesta a cero con módulos de presión absoluta</td>
<td>29</td>
</tr>
<tr>
<td>Utilización del modo Source</td>
<td>31</td>
</tr>
<tr>
<td>Fuente de corriente de 4 a 20 mA</td>
<td>31</td>
</tr>
<tr>
<td>Simulación de un transmisor de 4 a 20 mA</td>
<td>31</td>
</tr>
<tr>
<td>Fuente de otros parámetros eléctricos</td>
<td>31</td>
</tr>
<tr>
<td>Simulación de termopares</td>
<td>34</td>
</tr>
<tr>
<td>Simulación de RTD</td>
<td>34</td>
</tr>
<tr>
<td>Modo fuente de presión</td>
<td>37</td>
</tr>
<tr>
<td>Ajuste del 0 % y 100 % de los parámetros de salida</td>
<td>39</td>
</tr>
<tr>
<td>Salida en escalonamiento y rampa</td>
<td>39</td>
</tr>
<tr>
<td>Escalonamiento manual de la salida en mA</td>
<td>39</td>
</tr>
<tr>
<td>Rampa automática de la salida</td>
<td>40</td>
</tr>
<tr>
<td>Almacenamiento y recuperación de ajustes</td>
<td>40</td>
</tr>
<tr>
<td>Calibración de un transmisor</td>
<td>41</td>
</tr>
<tr>
<td>Calibración de un transmisor de presión</td>
<td>43</td>
</tr>
<tr>
<td>Calibración de un dispositivo I/P</td>
<td>45</td>
</tr>
<tr>
<td>Comprobación de conmutadores</td>
<td>47</td>
</tr>
<tr>
<td>Prueba de un dispositivo de salida</td>
<td>48</td>
</tr>
<tr>
<td>Reemplazo de las baterías</td>
<td>49</td>
</tr>
<tr>
<td>Baterías aprobadas</td>
<td>50</td>
</tr>
<tr>
<td>Mantenimiento</td>
<td>50</td>
</tr>
<tr>
<td>Limpieza del calibrador</td>
<td>50</td>
</tr>
<tr>
<td>Contenido (continua)</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>Calibración o reparación en el centro de servicio</td>
<td>50</td>
</tr>
<tr>
<td>Repuestos</td>
<td>51</td>
</tr>
<tr>
<td>Accesorios</td>
<td>53</td>
</tr>
<tr>
<td>Especificaciones</td>
<td>55</td>
</tr>
<tr>
<td>Medición de tensión CC</td>
<td>55</td>
</tr>
<tr>
<td>Fuente de tensión CC</td>
<td>55</td>
</tr>
<tr>
<td>Medición y fuente de milvoltios*</td>
<td>55</td>
</tr>
<tr>
<td>Medición y fuente de mA CC</td>
<td>56</td>
</tr>
<tr>
<td>Medición de ohmios</td>
<td>56</td>
</tr>
<tr>
<td>Fuente de ohmios</td>
<td>56</td>
</tr>
<tr>
<td>Medición de frecuencia</td>
<td>56</td>
</tr>
<tr>
<td>Fuente de frecuencia</td>
<td>57</td>
</tr>
<tr>
<td>Temperatura, termopares</td>
<td>57</td>
</tr>
<tr>
<td>Alimentación de lazo</td>
<td>57</td>
</tr>
<tr>
<td>Excitación RTD (simulación)</td>
<td>58</td>
</tr>
<tr>
<td>Temperatura, rangos RTD y exactitudes</td>
<td>58</td>
</tr>
<tr>
<td>Medición de presión</td>
<td>59</td>
</tr>
<tr>
<td>Especificaciones generales</td>
<td>59</td>
</tr>
<tr>
<td>Tabla</td>
<td>Título</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>1.</td>
<td>Resumen de las funciones de fuente y medición</td>
</tr>
<tr>
<td>2.</td>
<td>Símbolos</td>
</tr>
<tr>
<td>3.</td>
<td>Terminales y conectores de entrada/salida</td>
</tr>
<tr>
<td>5.</td>
<td>Tipos de termopares aceptados</td>
</tr>
<tr>
<td>6.</td>
<td>Tipos de RTD aceptados</td>
</tr>
<tr>
<td>7.</td>
<td>Valores de escalonamiento en mA</td>
</tr>
<tr>
<td>8.</td>
<td>Baterías aprobadas</td>
</tr>
<tr>
<td>9.</td>
<td>Repuestos</td>
</tr>
<tr>
<td>10.</td>
<td>Compatibilidad con módulos de presión de Fluke</td>
</tr>
<tr>
<td>11.</td>
<td>Módulos de presión</td>
</tr>
</tbody>
</table>
Lista de figuras

<table>
<thead>
<tr>
<th>Figura</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Equipo estándar</td>
<td>7</td>
</tr>
<tr>
<td>2.</td>
<td>Terminales y conectores de entrada/salida</td>
<td>10</td>
</tr>
<tr>
<td>3.</td>
<td>Teclas</td>
<td>12</td>
</tr>
<tr>
<td>4.</td>
<td>Elementos de una pantalla típica</td>
<td>15</td>
</tr>
<tr>
<td>5.</td>
<td>Prueba tensión a tensión</td>
<td>17</td>
</tr>
<tr>
<td>6.</td>
<td>Ajuste del contraste</td>
<td>18</td>
</tr>
<tr>
<td>7.</td>
<td>Medición de la salida de tensión y corriente</td>
<td>19</td>
</tr>
<tr>
<td>8.</td>
<td>Conexiones para suministrar alimentación de lazo</td>
<td>20</td>
</tr>
<tr>
<td>9.</td>
<td>Medición de parámetros eléctricos</td>
<td>21</td>
</tr>
<tr>
<td>10.</td>
<td>Medición de temperatura con un termopar</td>
<td>24</td>
</tr>
<tr>
<td>11.</td>
<td>Medición de temperatura con un RTD, Medición de resistencia de 2, 3 y 4 conductores</td>
<td>27</td>
</tr>
<tr>
<td>12.</td>
<td>Módulos de medición y de presión diferencial</td>
<td>28</td>
</tr>
<tr>
<td>13.</td>
<td>Conexiones para medir presión</td>
<td>30</td>
</tr>
<tr>
<td>14.</td>
<td>Conexiones para la simulación de un transmisor de 4 a 20 mA en un área sin peligro de explosión</td>
<td>32</td>
</tr>
<tr>
<td>15.</td>
<td>Conexiones para fuente de parámetros eléctricos</td>
<td>33</td>
</tr>
<tr>
<td>16.</td>
<td>Conexiones para simular un termopar</td>
<td>35</td>
</tr>
</tbody>
</table>
17. Conexiones para simular un RTD con 3 conductores... 36
18. Conexiones para funcionar como fuente de presión... 38
19. Calibración de un transmisor de termopar .. 42
20. Calibración de un transmisor presión a corriente (P/I).. 44
21. Calibración de un transmisor corriente a presión (I/P) ... 46
22. Calibración del registrador de gráficos.. 48
23. Reemplazo de las baterías .. 49
Introducción

Advertencia

Lea la sección “Información sobre seguridad” antes de utilizar el calibrador.

El calibrador de procesos multifunción Fluke 725Ex (de aquí en adelante “el calibrador”) es un instrumento manual a baterías que mide y suministra parámetros eléctricos y físicos. Para obtener un resumen de las funciones de fuente y medida, vea la tabla 1.

Además de las funciones que figuran en la tabla 1, el calibrador tiene las siguientes características y funciones:

- Una pantalla dividida. La parte superior de la pantalla sólo permite al usuario medir voltios, corriente y presión. La parte inferior de la pantalla le permite medir y servir de fuente de: tensión, corriente, presión, termodetectores de resistencia, termopares, frecuencia y ohmios.
- Calibración de transmisores utilizando la pantalla dividida.
- Un terminal de entrada/salida de termopar (TC) y un bloque isotérmico interno con compensación térmica automática en la unión de referencia.
- Almacenamiento y recuperación de los valores de los ajustes.
- Escalonamiento manual, escalonamiento y rampa automáticos.

Comunicación con Fluke

Para pedir accesorios, recibir asistencia con la operación u obtener la dirección del distribuidor o Centro de Servicio de Fluke más cercano a su localidad, llame al:

EE.UU.: 1-888-44-FLUKE (1-888-443-5853)
Canadá: 1-800-36-FLUKE (1-800-363-5853)
Europa: +31 402-675-200
Japón: +81-3-3434-0181
Singapur: +65-738-5655

Desde cualquier otro país: +1-425-446-5500
Para servicio en los EE.UU.: 1-888-99-FLUKE (1-888-993-5853)

O bien visite el sitio de Fluke en Internet, en www.fluke.com.
Para registrar este producto, visite register.fluke.com.
Tabla 1. Resumen de las funciones de fuente y medición

<table>
<thead>
<tr>
<th>Función</th>
<th>Medición</th>
<th>Fuente</th>
</tr>
</thead>
<tbody>
<tr>
<td>V cc</td>
<td>0 V cc a 30 V cc</td>
<td>0 V cc a 10 V cc</td>
</tr>
<tr>
<td>mA cc</td>
<td>0 a 24 mA cc</td>
<td>0 a 24 mA</td>
</tr>
<tr>
<td>Frecuencia</td>
<td>1 CPM a 10 kHz</td>
<td>1 CPM a 10 kHz</td>
</tr>
<tr>
<td>Resistencia</td>
<td>0 Ω a 3200 Ω</td>
<td>15 Ω a 3200 Ω</td>
</tr>
<tr>
<td>RTD (termo)</td>
<td>Ni120</td>
<td>Pt100 Ω (385)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pt100 Ω (3926)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pt100 Ω (3916)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pt200 Ω (385)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pt500 Ω (385)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pt1000 Ω (385)</td>
</tr>
<tr>
<td>Presión</td>
<td>Módulos serie Fluke 700PEx en el rango desde 10 pulg. H₂O hasta 3.000 psi</td>
<td>Módulos serie Fluke 700PEx en el rango desde 10 pulg. H₂O hasta 3.000 psi utilizando una fuente externa de presión (bomba manual)</td>
</tr>
<tr>
<td>Otras funciones</td>
<td>Alimentación de lazo, escalonamiento, rampa, memoria, pantalla dual</td>
<td></td>
</tr>
</tbody>
</table>
Equipo estándar

Los componentes listados a continuación y mostrados en la figura 1 se suministran junto con el calibrador. Si el calibrador está dañado o si falta algún elemento del mismo, póngase en contacto inmediatamente con el lugar en donde fue adquirido. Para pedir repuestos, consulte Repuestos en la Tabla 9.

- Puntas de prueba TL75 (un juego).
- Pinzas de conexión AC72 (un juego).
- Puntas de prueba con pinzas de conexión superponibles (un juego).
- CD-ROM de Fluke 725Ex (contiene el Manual de uso de Fluke 725Ex).
- Diagrama de control de Fluke 725Ex.
- Información sobre seguridad de Fluke 725Ex.
- 4 baterías AA (instaladas).
- Llave hexagonal de 5/64 pulg., brazo corto.

Información sobre seguridad

Un aviso de Advertencia identifica condiciones y acciones que representan peligros para el usuario. Un aviso de Precaución identifica condiciones y acciones que podrían causar daños al calibrador o al equipo sometido a prueba.

Los símbolos utilizados en el calibrador y en este manual se explican en la tabla 2.

Áreas con peligro de explosión

En este manual, las áreas con peligro de explosión se refieren a aquellas en donde puede haber vapores inflamables o explosivos. Estas áreas también se conocen como lugares peligrosos; consulte el artículo 500 de NFPA 70 o la sección 18 de CSA C22.1.

El calibrador modelo 725Ex ha sido diseñado para uso en áreas con peligro de explosión, es decir, áreas donde puede haber vapores potencialmente inflamables o explosivos. Éstas áreas se conocen como lugares peligrosos (restringidos) en los Estados Unidos, como Lugares Peligrosos en Canadá, Atmósferas Potencialmente Explosivas en Europa y Atmósferas con Gas Explosivo en gran parte del resto del mundo. El diseño del calibrador modelo 725 Ex es intrínsecamente seguro. Esto significa que al conectar el calibrador 725Ex a equipos que se utilizan dentro de circuitos intrínsecamente seguros no provocará un arco capaz de encenderse, siempre que los parámetros de la entidad estén correctamente ajustados.

El calibrador tiene dos juegos de parámetros. Los parámetros Vmax e Imax muestran la tensión máxima y la
corriente máxima que puede conectarse a los terminales del modelo 725Ex sin comprometer la seguridad intrínseca. Por lo general, la tensión y la corriente provendrán de barreras de seguridad intrínseca que suministran energía al equipo de campo, tales como transmisores y posicionadores (dispositivos I/P). Estas barreras se identifican con un parámetro de tensión máxima de circuito abierto (Voc) y un parámetro de corriente máxima de cortocircuito (Isc). El criterio de ajuste requiere que la Voc de la barrera no exceda los 30 V y que la Isc no exceda los 100 mA.

El calibrador modelo 725Ex constituirá una fuente de tensión y corriente en sí mismo. Cada juego de terminales tiene una clasificación Voc e Isc, tal como se indica en el diagrama de control de FLUKE 725Ex CCD. Al conectar terminales a otro equipo, las clasificaciones Vmax e Imax en el otro equipo deben exceder las de los terminales conectados al calibrador 725Ex.

Además, para hacer coincidir los parámetros de entidad de tensión y corriente, también es necesario verificar que no se hayan superado la capacitancia y la inductancia. Nuevamente, el diagrama de control de FLUKE 725Ex identifica la capacitancia máxima (Ca) y la inductancia máxima (La) permitida en base a la clasificación de la barrera de seguridad intrínseca o a la clasificación del calibrador 725Ex para los terminales específicos utilizados. Por ejemplo, el diagrama de control de Fluke 725ex explica que la capacitancia de cada unidad conectada en el circuito (Ci) más la capacitancia del cable en el circuito no debe superar la capacitancia máxima permitida (Ca). Lo mismo se aplica a la inductancia en el circuito intrinsecamente seguro.

Al conectar el calibrador 725Ex en un circuito energizado, es decir, cuando el circuito es alimentado por una barrera intrinsecamente segura, la tensión máxima del circuito utilizada para la evaluación del parámetro de la entidad será la Voc del calibrador 725Ex o la Voc de la barrera, la que sea mayor. La corriente máxima será la suma de la Isc del calibrador 725Ex y la Isc de la barrera. En este caso, se reducirá la inductancia máxima permitida (La). Este valor deberá determinarse mediante las curvas de ignición incluidas en normas tales como CSA C22.2 N° 157 o UL 913.

Para obtener más información sobre las áreas con peligro de explosión, consulte Definitions and Information Pertaining to Electrical Instruments in Hazardous (Classified) Locations en ANSI/ISA-12.01.01-1999 y Recommended Practice for Wiring Methods for Hazardous (Classified) Locations Instrumentation, Parte 1: Seguridad intrínseca, de ANSI/ISA-RP12.06.01-2003.
Para evitar descargas eléctricas, lesiones, daños al calibrador o ignición de una atmósfera explosiva, siga todos los procedimientos de seguridad del equipo.

- Utilice este calibrador únicamente tal como se describe en este Manual de uso y en el diagrama conceptual de control de Fluke 725Ex; en caso contrario, la protección provista por el mismo podría verse afectada.
- Inspeccione el calibrador antes de usarlo. No lo utilice si parece estar dañado.
- Verifique las puntas de prueba para comprobar su continuidad y ver si el aislamiento se encuentra dañado o hay partes metálicas expuestas. Reemplace las puntas de prueba dañadas.
- Cuando utilice sondas, mantenga los dedos detrás de los protectores correspondientes.
- Nunca aplique más de 30,0 V entre los terminales de entrada o entre cualquier terminal y la conexión a tierra.
- La aplicación de más de 30,0 V a los terminales de entrada invalida la aprobación para atmósferas explosivas del calibrador y podría ocasionar daños permanentes a la unidad que impidan continuar utilizándola.
- Utilice los terminales, el modo y el rango adecuados para la aplicación de medición o de generación pretendida.
- Para evitar dañar la unidad a prueba, asegúrese de que antes de conectar las puntas de prueba el calibrador esté en el modo correcto.
- Al realizar las conexiones, conecte la sonda de comprobación COM antes de la sonda de comprobación del conductor con tensión. Al desconectar, desconecte la sonda correspondiente al conductor con tensión antes de la sonda COM.
- Nunca abra la caja del calibrador. La apertura de la misma invalida la aprobación para atmósferas explosivas del calibrador.
- Asegúrese de que la puerta de la batería esté cerrada y trabada antes de entrar en un área con peligro de explosión o de utilizar el calibrador. Consulte “Áreas con peligro de explosión”.
- Reemplace la batería tan pronto como aparezca el indicador de batería baja para evitar lecturas falsas que pueden dar lugar a descargas eléctricas. Retire el calibrador de la zona expuesta a peligros de explosión antes de abrir la tapa de la batería. Consulte “Áreas con peligro de explosión”.
- Antes de quitar la cubierta de la batería, retire las puntas de prueba del calibrador.
- La categoría de medición I (CAT I) está definida para las mediciones realizadas en circuitos no conectados directamente a la red eléctrica.
Antes de conectar los terminales mA y COM del calibrador, proceda a cortar la alimentación al circuito. Coloque el calibrador en serie con el circuito.

Al efectuar mantenimiento en el calibrador, utilice solamente los repuestos especificados. No abra la caja del calibrador. La apertura de la misma invalida la aprobación para atmósferas explosivas del calibrador.

No permita que ingrese agua al interior de la caja.

Siempre que vaya a utilizarlo, compruebe el funcionamiento del calibrador midiendo una tensión conocida.

Nunca toque con la sonda una fuente de tensión cuando las puntas de prueba estén conectadas en los terminales de corriente.

No utilice el calibrador en presencia de polvo explosivo.

Al utilizar un módulo de presión, asegúrese de que la línea de presión del proceso esté cerrada y despresurizada antes de conectarla o desconectarla del módulo de presión.

Para alimentar el calibrador, utilice sólo 4 baterías AA de las que figuran en la tabla 8, instaladas correctamente en la caja del calibrador.

Cuando se mida la presión de gases tóxicos o inflamables, debe tenerse cuidado de minimizar la posibilidad de pérdidas: Confirme que todas las conexiones de presión estén adecuadamente selladas.

Precaución

Para evitar daños posibles al calibrador o al equipo a prueba:

- Desconecte la alimentación eléctrica y descargue todos los condensadores de alta tensión antes de efectuar pruebas de resistencia o continuidad.
- Utilice los conectores, funciones y rangos correctos para el tipo de medición realizada o fuente utilizada.
Áreas con peligro de explosión

Figura 1. Equipo estándar
Tabla 2. Símbolos

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚡️</td>
<td>CC - Corriente continua</td>
</tr>
<tr>
<td>🌋</td>
<td>Equipo ENCENDIDO/APAGADO</td>
</tr>
<tr>
<td>🔴</td>
<td>Conexión a tierra.</td>
</tr>
<tr>
<td>🔶️</td>
<td>Cumple con los requisitos de ATEX.</td>
</tr>
<tr>
<td>🔋</td>
<td>Batería</td>
</tr>
<tr>
<td>☐️</td>
<td>Aislamiento doble</td>
</tr>
<tr>
<td>⚤</td>
<td>Cumple las normas relevantes canadienses y norteamericanas.</td>
</tr>
<tr>
<td>⚤️</td>
<td>Cumple las normas aplicables de la Unión Europea.</td>
</tr>
<tr>
<td>🌊</td>
<td>Presión</td>
</tr>
</tbody>
</table>

Fallos y daños

La aplicación de una tensión de más de 30 V a la entrada del calibrador invalida su aprobación para atmósferas explosivas y podría afectar negativamente su funcionamiento seguro en una zona expuesta a peligros de explosión. Consulte “Áreas con peligro de explosión”.

Si hubiera cualquier motivo para sospechar que se ha afectado el funcionamiento seguro del calibrador, éste se deberá dejar de utilizar inmediatamente y se deberán tomar medidas de precaución para evitar todo uso posterior del calibrador en una zona expuesta a peligros de explosión. Consulte “Áreas con peligro de explosión”.

8
Cumpla absolutamente con todas las instrucciones, advertencias y precauciones contenidas en este manual. En caso de dudas debidas a errores de traducción y/o impresión, consulte el manual original del usuario en idioma inglés.

Las características de seguridad y la integridad de la unidad pueden verse comprometidas por cualquiera de las siguientes razones:

- Daños externos a la caja.
- Daños internos al calibrador.
- Exposición a cargas eléctricas excesivas.
- Almacenamiento incorrecto de la unidad.
- Daños sufridos en tránsito.
- Certificación correcta ilegible.
- Errores de funcionamiento.
- Superación de los límites permitidos.
- Errores de funcionamiento o inexactitudes evidentes de medición que impiden seguir efectuando mediciones con el calibrador.
- Apertura de la caja.

Normas de seguridad

El uso del calibrador cumple con los requisitos de las normas siempre y cuando el usuario observe y aplique los requisitos indicados en dichas normas y se evite el uso incorrecto e inadecuado de la unidad.

- El uso se debe restringir a los parámetros de aplicación especificados.
- No abra el calibrador.
- No retire ni instale las baterías dentro de una zona expuesta a peligros de explosión. Consulte “Áreas con peligro de explosión”.
- No transporte baterías adicionales dentro una zona expuesta a peligros de explosión. Consulte “Áreas con peligro de explosión”.
- Utilice únicamente baterías de tipo comprobado. El empleo de cualquier otra batería invalidará la certificación Ex y representará un riesgo de seguridad.
- No utilice el calibrador en ningún circuito donde la tensión o los transitorios excedan los 30 V.
- Utilice el calibrador únicamente en circuitos con parámetros de entidad compatibles. Al utilizar el calibrador en un área con peligro de explosión, a menos que sepa que es una zona segura, no conecte el instrumento a ningún circuito que exceda los parámetros de entidad definidos en el diagrama de control de Fluke 725Ex. Consulte “Áreas con peligro de explosión”.

Áreas con peligro de explosión
Información de certificación

- CE II 1 G Ex ia IIIB 171 °C 0344 KEMA 04ATEX1303X
- Clase I Div. 1 Grupos B, C y D
- LR110460 “Clase I Zona 0 AEx/Ex ia IIIB 171 °C” 2004.1573226
- Ta = -10 °C...+55 °C
- Fabricado por Martel Electronics Inc., 1F Commons Drive, Londonderry, NH, EE.UU.

Familiarización con el calibrador

Terminales de entrada y salida

La figura 2 muestra los terminales de entrada y salida del calibrador. La tabla 3 explica su utilización.

Figura 2. Terminales y conectores de entrada/salida
Tabla 3. Terminales y conectores de entrada/salida

<table>
<thead>
<tr>
<th>Nro.</th>
<th>Nombre</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Conector del módulo de presión</td>
<td>Conecta el calibrador a un módulo de presión.</td>
</tr>
<tr>
<td>2, 3</td>
<td>Terminales MEASURE V, mA</td>
<td>Terminales de entrada para la medición de tensión, corriente y el suministro de alimentación de lazo.</td>
</tr>
<tr>
<td>4</td>
<td>Entrada/salida TC</td>
<td>Terminal para la medición o simulación de termopares. Este terminal acepta miniclavijas polarizadas para termopar con patillas planas en línea con separación de 7,9 mm (0,312 pulg.) entre centros.</td>
</tr>
<tr>
<td>5, 6</td>
<td>Terminales SOURCE/MEASURE V, RTD, Hz, Ω</td>
<td>Terminales para fuente o medición de tensión, resistencia, frecuencia y RTD.</td>
</tr>
<tr>
<td>7, 8</td>
<td>Terminales SOURCE/MEASURE mA, 3W, 4W</td>
<td>Terminales para fuente y medición de corriente y para realizar mediciones de RTD con 3W y 4W (3 y 4 conductores).</td>
</tr>
</tbody>
</table>
Teclas

La figura 3 muestra las teclas del calibrador y la tabla 4 explica su utilización.
Tabla 4. Funciones de las teclas

<table>
<thead>
<tr>
<th>Nro.</th>
<th>Tecla</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Enciende y apaga la alimentación.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Selecciona las funciones de medición de tensión, mA o alimentación de lazo en la parte superior de la pantalla. Borra la prueba de conmutadores. Consulte “Prueba de conmutadores”.</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Selecciona la función medición de presión en la parte superior de la pantalla. Pulsándola repetidamente avanza cíclicamente por las diferentes unidades de presión. Utilice este botón para comprobar conmutadores de presión. Consulte “Prueba de conmutadores”.</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Pone a cero la lectura del módulo de presión. Esto es válido para ambas pantallas, superior e inferior.</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Enciende y apaga la luz de fondo.</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Conmuta entre las funciones de medición y fuente de frecuencia y ohmios.</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Conmuta entre grados centígrados y Fahrenheit al estar activas la funciones TC o RTD.</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Recupera de la memoria un valor de fuente correspondiente al 100 % de la amplitud y lo fija como el valor de fuente. Púlsela y manténgala pulsada para guardar el valor de fuente como el valor del 100 %.</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Incrementa la salida en el 25 % de la amplitud.</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Decrece la salida en el 25 % de la amplitud.</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Recupera de la memoria un valor de fuente correspondiente al 0 % de la amplitud y lo fija como el valor de fuente. Púlsela y manténgala pulsada para guardar el valor de fuente como el valor del 0 %.</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Avanza cíclicamente a través de: Repetición lenta de rampa 0 % -100 % - 0 % Repetición rápida de rampa 0 % -100 % - 0 % Repetición de rampa 0 % -100 % - 0 % con escalonamiento de 25 %</td>
</tr>
</tbody>
</table>
Tabla 4. Funciones de las teclas (cont.)

<table>
<thead>
<tr>
<th>Nro.</th>
<th>Tecla</th>
<th>Descripción</th>
</tr>
</thead>
</table>
| 11 | AM AM OY OZ | Desactiva el modo Apagado automático
Activa el modo Apagado automático |
| 13 | XW X Y Z | Incrementa o disminuye el nivel de fuente.
Recorre cíclicamente las selecciones 2, 3 y 4 conductores.
Avanza a través de las posiciones de memoria de los ajustes del calibrador.
En modo Ajuste del contraste; la flecha hacia arriba oscurece el contraste y la flecha hacia abajo, lo aclara. |
| 14 | RECALL | Recupera un ajuste previo del calibrador desde una posición de memoria. |
| 15 | STORE SETUP | Guarda los ajustes del calibrador. Guarda la configuración de Ajuste del contraste. |
| 16 | MEAS SOURCE | Avanza cíclicamente el calibrador a través de los modos MEASURE y SOURCE en la parte inferior de la pantalla. |
| 17 | TC | Selecciona la función medición y fuente TC (termopar) en la parte inferior de la pantalla.
Pulsándola repetidamente avanza cíclicamente a través de los tipos de termopares. |
| 18 | V mA | Conmuta entre las funciones fuente de tensión o mA y simulación de mA en la parte inferior de la pantalla. |
| 19 | RTD | Selecciona la función medición y fuente de RTD (termodetectores de resistencia) en la parte inferior de la pantalla. Pulsándola repetidamente avanza cíclicamente a través de los tipos de RTD. |
| 20 | | Selecciona la función medición y fuente de presión. Pulsándola repetidamente avanza cíclicamente por las diferentes unidades de presión. |
Pantalla
La figura 4 muestra los elementos de la pantalla.
Funcionamiento básico

Esta sección describe algunas operaciones básicas del calibrador.

Proceda como sigue para realizar una prueba tensión a tensión:

1. Conecte la salida de tensión del calibrador a su entrada de tensión tal como se muestra en la figura 5.
2. Pulse \(\text{O} \) para encender el calibrador. Pulse \(\text{V mA} \) para seleccionar tensión cc (parte superior de la pantalla).
3. Si es necesario, pulse \(\text{MIN} \) para activar el modo SOURCE (parte inferior de la pantalla). El calibrador continuará midiendo tensión cc y las mediciones activas se pueden ver en la parte superior de la pantalla.
4. Pulse \(\text{V mA} \) para seleccionar fuente de tensión cc.
5. Pulse \(\text{L i y } \text{H} \) para seleccionar un dígito a cambiar. Pulse \(\text{L i} \) para seleccionar 1 V para el valor de salida. Pulse y mantenga pulsada \(\text{L i i} \) para introducir 1 V como el valor correspondiente a 0 %.
6. Pulse \(\text{L i} \) para incrementar la salida a 5 V. Pulse y mantenga pulsada \(\text{L i 100 %} \) para introducir 5 V como el valor correspondiente al 100 %.
7. Pulse \(\text{L i 25 %} \) y \(\text{L i 50 %} \) para desplazarse entre 0 y 100 % en incrementos del 25 %.

Modo Apagado automático

El calibrador viene con el modo Apagado automático activado y configurado en una duración de 30 minutos (que se visualiza durante 1 segundo al encender por primera vez el calibrador). Al activar el modo Apagado automático, el calibrador se apagará automáticamente después de transcurrido cierto tiempo desde la última vez que se pulsó una tecla. Para desactivar el modo Apagado automático, pulse \(\text{O y } \text{Y} \) simultáneamente. Para activarlo, pulse \(\text{O y } \text{Z} \) simultáneamente. Para ajustar el tiempo que debe transcurrir antes de apagarse, pulse \(\text{O y } \text{W} \) simultáneamente, y luego \(\text{L i y/o } \text{L i} \) para ajustarlo entre 1 y 30 minutos.
Figura 5. Prueba tensión a tensión
Ajuste del contraste

Para ajustar el contraste, proceda de la siguiente manera:

1. Pulse y hasta que aparezca Ajuste del contraste, tal como se ilustra en la figura 6.
2. Mantenga pulsado para oscurecer el contraste.
3. Mantenga pulsado para aclarar el contraste.
4. Pulse para guardar el nivel de contraste.

![Figura 6. Ajuste del contraste](sh06f.eps)
Utilización del modo Measure

Medición de parámetros eléctricos (parte superior de la pantalla)

Para medir la salida de corriente o tensión de un transmisor o para medir la salida de un instrumento de presión, utilice la parte superior de la pantalla y proceda como sigue:

1. Pulse V/MA para seleccionar tensión o corriente.
 La función LOOP no debe estar activada.
2. Conecte los conductores tal como se muestra en la figura 7.

Medición de corriente con alimentación de lazo

La función alimentación de lazo activa una fuente de 12 V en serie con el circuito de medición de corriente, permitiendo así probar un transmisor cuando está desconectado del cableado de la planta. Para medir la corriente con la alimentación de lazo, proceda como sigue:

1. Conecte el calibrador a los terminales del lazo de corriente del transmisor tal como se muestra en la figura 8.
2. Pulse V/MA mientras el calibrador está en el modo de medición de corriente. Aparece LOOP y se enciende una fuente interna de lazo de 12 V.

Figura 7. Medición de la salida de tensión y corriente
Figura 8. Conexiones para suministrar alimentación de lazo
Utilización del modo Measure

Medición de parámetros eléctricos (parte inferior de la pantalla)

Para medir parámetros eléctricos utilizando la parte inferior de la pantalla, proceda como sigue:

1. Conecte el calibrador tal como se muestra en la figura 9.
2. Si es necesario, pulse para activar el modo MEASURE (parte inferior de la pantalla).
3. Pulse para tensión o corriente continua, o para frecuencia o resistencia.

![Figura 9. Medición de parámetros eléctricos](aly43f.epsp)
Medición de temperatura

Utilización de termopares

Para medir temperatura utilizando un termopar, proceda como sigue:

1. Conecte los conductores del termopar a la miniclavija TC apropiada y luego a la entrada/salida TC tal como se muestra en la figura 10.

2. Si es necesario, pulse la tecla "M" para activar el modo "MEASURE".

3. Pulse la tecla "TC" para presentar la pantalla TC. Continúe pulsando esta tecla para seleccionar el tipo de termopar deseado.

De ser necesario, puede pulsar la tecla "C °F" para conmutar entre las escalas de temperatura °C o °F.

⚠️ Precaución

Una patilla del termopar es más ancha que la otra. Para evitar dañar el calibrador o el equipo a prueba, no trate de forzar la miniclavija en la polaridad incorrecta.

Nota

Si el calibrador y el conector macho del termopar están a temperaturas diferentes, espere un minuto o más para que se establezca la temperatura del conector después de insertar la miniclavija en la salida/entrada TC.
Tabla 5. Tipos de termopares aceptados

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Material del conductor positivo</th>
<th>Color del conductor positivo (H)</th>
<th>Material del conductor negativo</th>
<th>Rango específico (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ANSI*</td>
<td>IEC**</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Cromel</td>
<td>Púrpura</td>
<td>Violeta</td>
<td>Constantan</td>
</tr>
<tr>
<td>N</td>
<td>Ni-Cr-Si</td>
<td>Anaranjado</td>
<td>Rosado</td>
<td>Ni-Si-Mg</td>
</tr>
<tr>
<td>J</td>
<td>Hierro</td>
<td>Blanco</td>
<td>Negro</td>
<td>Constantan</td>
</tr>
<tr>
<td>K</td>
<td>Cromel</td>
<td>Amarillo</td>
<td>Verde</td>
<td>Alumel</td>
</tr>
<tr>
<td>T</td>
<td>Cobre</td>
<td>Azul</td>
<td>Marrón</td>
<td>Constantan</td>
</tr>
<tr>
<td>B</td>
<td>Platino (30 % de rodio)</td>
<td>Gris</td>
<td>Platino (6 % de rodio)</td>
<td>600 a 1800</td>
</tr>
<tr>
<td>R</td>
<td>Platino (13 % de rodio)</td>
<td>Negro</td>
<td>Anaranjado</td>
<td>Platino</td>
</tr>
<tr>
<td>S</td>
<td>Platino (10 % de rodio)</td>
<td>Negro</td>
<td>Anaranjado</td>
<td>Platino</td>
</tr>
<tr>
<td>L</td>
<td>Hierro</td>
<td></td>
<td>Constantan</td>
<td>-200 a 900</td>
</tr>
<tr>
<td>U</td>
<td>Cobre</td>
<td></td>
<td>Constantan</td>
<td>-200 a 400</td>
</tr>
<tr>
<td>X</td>
<td>90,5 % Ni + 9,5 % Cr</td>
<td>GOST</td>
<td>56 % Cu + 44 % Ni</td>
<td>-200 a 800</td>
</tr>
<tr>
<td>BP</td>
<td>95 % W + 5 % Re</td>
<td>Rojo o rosa</td>
<td>80 % W + 20 % Re</td>
<td>0 a 2500</td>
</tr>
</tbody>
</table>

*Según el American National Standards Institute (ANSI), el conductor negativo (L) del dispositivo siempre es rojo.

**Según la International Electrotechnical Commission (IEC), el conductor negativo (L) del dispositivo siempre es blanco.
Figura 10. Medición de temperatura con un termopar

Advertencia

30 V tensión máxima a

Temperatura del proceso
Utilización del modo Measure

Utilización de termodetectores de resistencia (RTD)

El calibrador acepta los tipos de RTD incluidos en la tabla 6. Los RTD están caracterizados por su resistencia a 0 °C (32 °F), que se denomina “temperatura de fusión del hielo” o R₀. El R₀ más común es 100 Ω. El calibrador acepta entradas de medición con RTD mediante conexiones con dos, tres o cuatro conductores, siendo la conexión con tres conductores la más común. Una configuración de cuatro conductores proporciona la exactitud más alta, mientras que una de dos conductores proporciona la exactitud más baja para la medición.

Para medir temperatura utilizando una entrada de RTD, proceda como sigue:

1. Si es necesario, pulse para activar el modo MEASURE.
2. Pulse para presentar la pantalla RTD. Si lo desea, continúe pulsando esta tecla para seleccionar el tipo de RTD deseado.
3. Pulse o para seleccionar una conexión de 2, 3 ó 4 conductores.
4. Conecte el RTD a los terminales de entrada tal como se muestra en la figura 11.
5. De ser necesario, puede pulsar para conmutar entre las escalas de temperatura °C o °F.
Tabla 6. Tipos de RTD aceptados

<table>
<thead>
<tr>
<th>Tipo de RTD</th>
<th>Punto fusión del hielo (R₀)</th>
<th>Material</th>
<th>α</th>
<th>Rango (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt100 (3926)</td>
<td>100 Ω</td>
<td>Platino</td>
<td>0,003926 Ω/°C</td>
<td>-200 a 630</td>
</tr>
<tr>
<td>Pt100 (385)</td>
<td>100 Ω</td>
<td>Platino</td>
<td>0,00385 Ω/°C</td>
<td>-200 a 800</td>
</tr>
<tr>
<td>Ni120 (672)</td>
<td>120 Ω</td>
<td>Níquel</td>
<td>0,00672 Ω/°C</td>
<td>-80 a 260</td>
</tr>
<tr>
<td>Pt200 (385)</td>
<td>200 Ω</td>
<td>Platino</td>
<td>0,00385 Ω/°C</td>
<td>-200 a 630</td>
</tr>
<tr>
<td>Pt500 (385)</td>
<td>500 Ω</td>
<td>Platino</td>
<td>0,00385 Ω/°C</td>
<td>-200 a 630</td>
</tr>
<tr>
<td>Pt1000 (385)</td>
<td>1000 Ω</td>
<td>Platino</td>
<td>0,00385 Ω/°C</td>
<td>-200 a 630</td>
</tr>
<tr>
<td>Pt100 (3916)</td>
<td>100 Ω</td>
<td>Platino</td>
<td>0,003916 Ω/°C</td>
<td>-200 a 630</td>
</tr>
</tbody>
</table>

El RTD estándar de la IEC y el RTD más común en aplicaciones industriales en los EE.UU. es el Pt100 (385), α = 0,00385 Ω/°C.
Figura 11. Medición de temperatura con un RTD, Medición de resistencia de 2, 3 y 4 conductores
Medición de presión

Fluke distribuye módulos de presión en una variedad de tipos y rangos. Consulte la sección “Accesorios” más adelante en este manual. Antes de utilizar un módulo de presión, lea su hoja de instrucciones. Los módulos varían en el uso, el medio y la exactitud.

La figura 12 muestra los módulos de medición y de presión diferencial. Los módulos diferenciales también funcionan en el modo de medición dejando el acoplamiento de baja presión abierto a la atmósfera.

Para medir presión, conecte el módulo de presión adecuado para la presión de proceso a probar.

Proceda como sigue para medir presión:

⚠️ **Advertencia**

Utilice módulos de presión serie Fluke 700PEx solamente.

Para evitar una descarga súbita de presión en un sistema presurizado, cierre la válvula y disminuya lentamente la presión antes de conectar el módulo de presión a la línea presurizada.

⚠️ **Precaución**

- Para evitar daños mecánicos al módulo de presión, nunca aplique un par de apriete superior a 10 pies-lb. (13,5 Nm) entre los conectores del módulo de presión o entre los conectores y el cuerpo del módulo. Aplique siempre el par de apriete apropiado entre el conector del módulo de presión y los accesorios o adaptadores de conexión.
- Para evitar daños al módulo de presión por presión excesiva, nunca aplique una presión superior al valor nominal máximo impreso en el módulo de presión.
• Para evitar daños al módulo de presión por corrosión, úselo solamente con los materiales especificados. Consulte las recomendaciones impresas en el módulo de presión o la hoja de instrucciones del módulo de presión para conocer las compatibilidades aceptables de los materiales.

1. Conecte el módulo de presión al calibrador tal como se muestra en la figura 13. Las roscas en los módulos de presión aceptan accesorios para tubería estándar ¼ NPT. Si es necesario, utilice el adaptador de ¼ NPT a ¼ ISO.

2. Pulse \(\text{A} \). El calibrador detecta automáticamente qué módulo de presión está conectado y fija automáticamente el rango correspondiente.

3. Ponga a cero el módulo de presión tal como se describe en la hoja de instrucciones del módulo. El procedimiento para poner a cero los módulos varía dependiendo del tipo de módulo, pero todos requieren que se pulse la tecla \(\text{K} \).

Si lo desea, continúe pulsando \(\text{A} \) para cambiar las unidades de presentación de la presión a psi, mm Hg, pulg. Hg, cm H₂O a 4 ºC, cm H₂O a 20 ºC, pulg. H₂O a 4 ºC, pulg. H₂O a 20 ºC, pulg. H₂O a 60 ºF, mbar, bar, kg/cm² o kPa.

Puesta a cero con módulos de presión absoluta

Para poner a cero, ajuste el calibrador para leer una presión conocida. Ésta puede ser la presión barométrica, si se la conoce con exactitud. Un patrón de presión preciso también puede aplicar una presión dentro del rango para cualquier módulo de presión absoluta. Para ajustar la lectura del calibrador, proceda de la siguiente manera:

1. Pulse \(\text{ZERO} \); aparecerá REF Adjust a la derecha de la lectura de presión.

2. Utilice \(\text{X} \) para aumentar la lectura del calibrador, o \(\text{W} \) para disminuirla, a fin de igualar la presión de referencia.

3. Pulse \(\text{ZERO} \) nuevamente para abandonar el procedimiento de puesta a cero.

El calibrador guarda y vuelve a utilizar automáticamente la corrección del desplazamiento del cero para un módulo de presión absoluta, de modo que no sea necesario que vuelva a poner a cero el módulo cada vez que se utilice.
Figura 13. Conexiones para medir presión
Utilización del modo Source

En el modo SOURCE, el calibrador genera señales calibradas para probar y calibrar instrumentos de proceso; suministra tensiones, corrientes, frecuencias y resistencias; simula la señal eléctrica de salida de detectores de temperatura por RTD o termopar; y mide la presión de gas de una fuente externa, creando una fuente de presión calibrada.

Fuente de corriente de 4 a 20 mA

Para seleccionar el modo fuente de corriente, proceda como sigue:
1. Conecte las puntas de prueba en los terminales mA (columna izquierda).
2. Si es necesario, pulse para activar el modo SOURCE.
3. Pulse para seleccionar corriente y pulse las teclas y para introducir el valor deseado para la corriente. Pulse y para seleccionar un dígito diferente a cambiar.

Simulación de un transmisor de 4 a 20 mA

La simulación es un modo especial de funcionamiento en el cual el calibrador se conecta en un lazo en lugar de un transmisor para suministrar una corriente de prueba de valor conocido y ajustable. Para hacerlo, proceda como sigue:
1. Conecte la fuente de alimentación de lazo de 12 V tal como se muestra en la figura 14.
2. Si es necesario, pulse para activar el modo SOURCE.
3. Pulse hasta que ambos mA y SIM aparezcan en la pantalla.
4. Pulse las teclas y para introducir el valor que desea para la corriente.

Fuente de otros parámetros eléctricos

El calibrador también puede servir de fuente de voltios, ohmios y frecuencia presentándolos en la parte inferior de la pantalla.

Para seleccionar una función de fuente de un parámetro eléctrico, proceda como sigue:
1. Conecte las puntas de prueba tal como se muestra en la figura 15, dependiendo de la función de fuente.
2. Si es necesario, pulse para activar el modo SOURCE.
3. Pulse para tensión cc, o para frecuencia o resistencia.
4. Pulse las teclas y para introducir el valor de salida que desea. Pulse y para seleccionar un dígito diferente a cambiar.
Figura 14. Conexiones para la simulación de un transmisor de 4 a 20 mA en un área sin peligro de explosión
Figura 15. Conexiones para fuente de parámetros eléctricos
Simulación de termopares

Conecte la entrada/salida TC del calibrador al instrumento sometido a prueba mediante cable de termopar y la miniclavija de termopar (miniclavija polarizada de termopar con patillas planas en línea con separación de 7,9 mm [0,312 pulg.] entre centros).

¡Precaución!

Una patilla es más ancha que la otra. No trate de forzar la miniclavija en la polaridad incorrecta.

La figura 16 muestra esta conexión. Para simular un termopar, proceda como sigue:

1. Conecte los conductores del termopar a la miniclavija TC apropiada y luego a la entrada/salida TC tal como se muestra en la figura 16.

2. Si es necesario, pulse \(M \) para activar el modo SOURCE.

3. Pulse \(T \) para presentar la pantalla TC. Si lo desea, continúe pulsando esta tecla para seleccionar el tipo de termopar deseado.

4. Pulse las teclas \(X \) y \(W \) para introducir el valor que desea para la temperatura. Pulse \(Y \) y \(Z \) para seleccionar un dígito diferente a editar.

Simulación de RTD

Conecte el calibrador al instrumento sometido a prueba tal como se muestra en la figura 17. Para simular un RTD, proceda como sigue:

1. Si es necesario, pulse \(M \) para activar el modo SOURCE.

2. Pulse \(R \) para presentar la pantalla RTD.

Nota

Utilice los terminales 3W y 4W sólo para mediciones y no para simulaciones. El calibrador simula un RTD de 2 conductores en su panel frontal. Para conectar a un transmisor de 3 o 4 conductores, utilice los cables superponibles para proveer así los conductores adicionales. Vea la figura 17.

3. Pulse las teclas \(X \) y \(W \) para introducir el valor que desea para la temperatura. Pulse \(Y \) y \(Z \) para seleccionar un dígito diferente a editar.
Utilización del modo Source

Figura 16. Conexiones para simular un termopar
<table>
<thead>
<tr>
<th>Valor</th>
<th>Unidad</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,000</td>
<td>mA</td>
<td>RECALL</td>
</tr>
<tr>
<td>10,00</td>
<td>mA</td>
<td>ZERO</td>
</tr>
<tr>
<td>23</td>
<td>˚C</td>
<td>MEAS</td>
</tr>
<tr>
<td>4</td>
<td>Hz</td>
<td>SOURCE</td>
</tr>
<tr>
<td>0,000</td>
<td>%</td>
<td>STORE</td>
</tr>
<tr>
<td>100</td>
<td>%</td>
<td>SETUP</td>
</tr>
<tr>
<td>25</td>
<td>%</td>
<td>100%</td>
</tr>
<tr>
<td>25</td>
<td>%</td>
<td>25%</td>
</tr>
</tbody>
</table>

Figura 17. Conexiones para simular un RTD con 3 conductores
Utilización del modo Source

Modo fuente de presión

El calibrador puede utilizarse para controlar la presión suministrada por una bomba u otro medio, y mostrará la presión en el campo SOURCE. La figura 18 muestra cómo conectar una bomba a un módulo de presión de Fluke, convirtiéndola en fuente calibrada.

Conecte el módulo de presión adecuado para la presión de proceso a probar.

Proceda como sigue para funcionar como fuente de presión:

Advertencia

- Para evitar una descarga súbita de presión en un sistema presurizado, cierre la válvula y disminuya lentamente la presión antes de conectar el módulo de presión a la línea presurizada.
- Utilice únicamente módulos de presión serie Fluke 700PEx.

Precaución

- Para evitar daños mecánicos al módulo de presión, nunca aplique un par de apriete superior a 10 pies-lb. (13,5 Nm) entre los conectores del módulo de presión o entre los conectores y el cuerpo del módulo. Aplique siempre el par de apriete apropiado entre el conector del módulo de presión y los accesorios o adaptadores de conexión.
- Para evitar daños al módulo de presión por presión excesiva, nunca aplique una presión superior al valor nominal máximo impreso en el módulo de presión.
- Para evitar daños al módulo de presión por corrosión, utilícelo solamente con los materiales especificados. Consulte las recomendaciones impresas en el módulo de presión o la hoja de instrucciones del módulo de presión para conocer las compatibilidades aceptables de los materiales.
1. Conecte el módulo de presión al calibrador tal como se muestra en la figura 18. Las roscas en los módulos de presión aceptan accesorios para tubería estándar ¼ NPT. Si es necesario, utilice el adaptador de ¼ NPT a ¼ ISO.

2. Pulse (parte inferior de la pantalla). El calibrador detecta automáticamente qué módulo de presión está conectado y fija automáticamente el rango correspondiente.

3. Ponga a cero el módulo de presión tal como se describe en la hoja de instrucciones del módulo. El procedimiento de puesta a cero depende del tipo de módulo.

4. Suministre presión a la línea con la fuente de presión hasta el nivel deseado de acuerdo con el valor presentado en la pantalla. Si lo desea, continúe pulsando para cambiar las unidades de presentación de la presión a psi, mm Hg, pulg. Hg, cm H₂O a 4 °C, cm H₂O a 20 °C, pulg. H₂O a 4 °C, pulg. H₂O a 20 °C, pulg. H₂O a 60 °F, mbar, bar, kg/cm² o kPa.

Figura 18. Conexiones para funcionar como fuente de presión
Ajuste del 0 % y 100 % de los parámetros de salida

Para la salida de corriente, el calibrador asume que 0 % corresponde a 4 mA y que 100 % corresponde a 20 mA. Para los otros parámetros de salida, se deben fijar los puntos del 0 % y 100 % antes de utilizar las funciones de escalonamiento y rampa. Para hacerlo, proceda como sigue:

1. Si es necesario, pulse \(\text{SOURCE} \) para activar el modo SOURCE.
2. Seleccione la función de fuente deseada y utilice las teclas de dirección (flechas) para introducir el valor. Considere la función de fuente de temperatura que utiliza los valores 100 \(^\circ \)C y 300 \(^\circ \)C.
3. Introduzca 100 \(^\circ \)C, pulse y mantenga pulsada la tecla \(\text{H} \) para guardar el valor.
4. Introduzca 300 \(^\circ \)C, pulse y mantenga pulsada la tecla \(\text{I} \) para guardar el valor.

Este ajuste ahora se puede utilizar para:
- Escalonar manualmente una salida con incrementos del 25 %.
- Saltar entre los puntos 0 % y 100 % de la amplitud pulsando momentáneamente \(\text{J} \) o \(\text{G} \).

Salida en escalonamiento y rampa

Existen dos formas para ajustar el valor de las funciones de fuente.
- Salida con escalonamiento manual, con las teclas \(\text{H} \) y \(\text{I} \), o automático.
- Salida de rampa.

El escalonamiento y rampa se aplica a todas las funciones excepto a la presión, que requiere el uso de una fuente de presión externa.

Escalonamiento manual de la salida en mA

Para el escalonamiento manual de la corriente puede proceder como sigue:
- Utilice \(\text{A} \) o \(\text{B} \) para ajustar la corriente hacia arriba o hacia abajo en incrementos de 25 %.
- Pulse momentáneamente \(\text{C} \) para desplazarse a 0 %, o \(\text{D} \) para desplazarse a 100 %.
Rampa automática de la salida

La generación automática de rampas le da la capacidad de aplicar continuamente un estímulo variable desde el calibrador a un transmisor, manteniendo sus manos libres para probar la respuesta del transmisor.

Al pulsar el botón [100%], el calibrador produce una rampa que se repite continuamente de 0% a 100% a 0% de acuerdo con tres formas de onda de rampa posibles:

- **Æ** Rampa aplanada 0 % - 100 % - 0 % de 40 segundos.
- **ÆÆ** Rampa aplanada 0 % - 100 % - 0 % de 15 segundos.
- **ÆÆÆ** Rampa 0 % - 100 % - 0 % con escalonamiento de 25% y una pausa de 5 segundos en cada escalón. Los escalones están listados en la tabla 7.

Para abandonar la función de rampa, pulse cualquier botón.

Tabla 7. Valores de escalonamiento en mA

<table>
<thead>
<tr>
<th>Incremento</th>
<th>4 a 20 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 %</td>
<td>4,000</td>
</tr>
<tr>
<td>25 %</td>
<td>8,000</td>
</tr>
<tr>
<td>50 %</td>
<td>12,000</td>
</tr>
<tr>
<td>75 %</td>
<td>16,000</td>
</tr>
<tr>
<td>100 %</td>
<td>20,000</td>
</tr>
</tbody>
</table>

Almacenamiento y recuperación de ajustes

Puede guardar hasta ocho ajustes en una memoria no volátil y recuperarlos para utilizarlos posteriormente. Una condición de batería descargada o un cambio de batería no modifica los ajustes guardados. Para hacerlo, proceda como sigue:

1. Después de crear un ajuste para el calibrador, pulse [RECALL]. En la pantalla aparecen las posiciones de memoria.
2. Pulse 01 o 02 para seleccionar las posiciones de la uno a la ocho. Un carácter de subrayado aparece bajo la posición de memoria seleccionada.
3. Pulse [RECALL] hasta que el número de la posición de memoria desaparezca y vuelva a aparecer. Esto indica que el ajuste fue guardado.

Para recuperar ajustes, proceda como sigue:

1. Pulse [RECALL]. Las posiciones de memoria aparecen en la pantalla.
2. Pulse 01 o 02 para seleccionar la posición de memoria apropiada y luego pulse [RECALL].
Calibración de un transmisor

Para calibrar un transmisor utilice los modos medición (parte superior de la pantalla) y fuente (parte inferior de la pantalla). Esta sección se aplica a todos los transmisores con excepción de los transmisores de presión. El ejemplo siguiente muestra cómo calibrar un transmisor de temperatura.

Conecte el calibrador al instrumento sometido a prueba tal como se muestra en la figura 19. Para calibrar un transmisor, proceda como sigue:

2. Pulse [TC] (parte inferior de la pantalla). Si lo desea, continúe pulsando esta tecla para seleccionar el tipo de termopar deseado.
3. Si es necesario, pulse [SOURCE] para activar el modo SOURCE.
4. Pulse las teclas [0] y [25%] para ajustar los parámetros de cero y amplitud. Pulse y mantenga pulsadas [100%] para introducir estos parámetros. Para obtener más información acerca del ajuste de parámetros, consulte la sección “Ajuste del 0 % y 100 % de los parámetros de salida”, presentada anteriormente en este manual.
6. Realice pruebas de comprobación en los puntos 0- 25-50-75-100 % pulsando [25%] o [75%]. Ajuste el transmisor según sea necesario.
Figura 19. Calibración de un transmisor de termopar

Consulte el diagrama de control de Fluke 725Ex al utilizar en un área con peligro de explosión.
El ejemplo siguiente muestra cómo calibrar un transmisor de presión.

Conecte el calibrador al instrumento sometido a prueba tal como se muestra en la figura 20. Para calibrar un transmisor de presión, proceda como sigue:

1. Pulse \(\text{F mA} \) para seleccionar corriente (parte superior de la pantalla). Si es necesario, pulse \(\text{F mA} \) nuevamente para activar alimentación de lazo.
2. Pulse \(\text{B} \) (parte inferior de la pantalla).
3. Si es necesario, pulse \(\text{A} \) para activar el modo SOURCE.
4. Ponga a cero la lectura del módulo de presión.
5. Realice las comprobaciones a 0 % y 100 % de la amplitud y ajuste el transmisor según sea necesario.
Figura 20. Calibración de un transmisor presión a corriente (P/I)
Calibración de un dispositivo I/P

La siguiente prueba le permite calibrar un dispositivo que controla presión. Para hacerlo, proceda como sigue:

1. Conecte las puntas de prueba al instrumento sometido a prueba tal como se muestra en la figura 21. Las conexiones simulan un transmisor de corriente a presión y miden la salida de presión correspondiente.

4. Si es necesario, pulse [M] para activar el modo SOURCE.

Figura 21. Calibración de un transmisor corriente a presión (I/P)
Comprobación de conmutadores

Para realizar una comprobación de conmutadores, siga estos pasos:

1. Conecte los terminales mA y COM del calibrador al conmutador usando los terminales del conmutador de presión y conecte la bomba desde el calibrador al conmutador de presión. La polaridad de los terminales no tiene importancia.

2. Asegúrese de que se encuentre abierta la salida de presión de la bomba y ponga el calibrador en cero en caso de ser necesario. Después de poner el calibrador en cero, cierre la salida de presión.

3. Mantenga pulsado el botón de la parte superior de la pantalla durante tres segundos para entrar al modo Prueba de conmutadores. La parte superior de la pantalla principal indica la presión aplicada, aparecerá CLOSE a la derecha de la lectura de presión para indicar los contactos cerrados.

4. Aplique lentamente presión con la bomba hasta que el conmutador se abra.

Nota
Este ejemplo utiliza un conmutador normalmente cerrado. El procedimiento es el mismo para un conmutador abierto, excepto que la pantalla indicará OPEN en lugar de CLOSE.

5. Una vez que el conmutador esté abierto aparecerá OPEN en la pantalla. Purge la bomba lentamente hasta que se cierre el conmutador de presión. En la pantalla aparecerá RECALL.

6. Pulse para leer los valores de presión para cuando el conmutador se abrió, cuando se cerró y para la banda inactiva.

7. Mantenga pulsado durante tres segundos para salir de la prueba de conmutadores, o pulse para borrar la prueba y volver a ejecutarla.

Nota
Presurice el dispositivo lentamente para garantizar lecturas exactas. Realice la prueba varias veces para confirmar su repetibilidad.
Prueba de un dispositivo de salida

Utilice las funciones de fuente para calibrar dispositivos tales como actuadores, registradores e indicadores. Para hacerlo, proceda como sigue:

1. Conecte las puntas de prueba al instrumento sometido a prueba tal como se muestra en la figura 22.
2. Pulse [V mA] para tensión o corriente continua, o [Hz ℃] para frecuencia o resistencia (parte inferior de la pantalla).
3. Si es necesario, pulse [M] para activar el modo SOURCE.

Figura 22. Calibración del registrador de gráficos
Reemplazo de las baterías

⚠ Advertencia

- Para evitar falsas lecturas que podrían conducir a posibles descargas eléctricas o lesiones personales, reemplace las baterías tan pronto como aparezca el indicador de batería (مؤن).
- Retire el calibrador de la zona expuesta a peligros de explosión antes de abrir la tapa de la batería. Consulte “Áreas con peligro de explosión”.

La figura 23 muestra cómo reemplazar las baterías.

Figura 23. Reemplazo de las baterías
Baterías aprobadas

Tabla 8. Baterías aprobadas

<table>
<thead>
<tr>
<th>Fabricante</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duracell (Todas baterías alcalinas - AA 1,5 V)</td>
<td>MN1500</td>
</tr>
<tr>
<td>Eveready (Energizer)</td>
<td>E91</td>
</tr>
<tr>
<td>Panasonic Powerline</td>
<td>LR6A</td>
</tr>
<tr>
<td>Rayovac</td>
<td>815</td>
</tr>
<tr>
<td>Varta</td>
<td>4906</td>
</tr>
<tr>
<td>Ucar Gold</td>
<td>LR6</td>
</tr>
</tbody>
</table>

Mantenimiento

Limpieza del calibrador

⚠️ **Advertencia**
Para evitar lesiones personales o daños al calibrador, utilice solamente los repuestos especificados y no permita que entre agua dentro de la caja.

⚠️ **Precaución**
Para evitar dañar la lente de plástico y la caja, no utilice solventes ni limpiadores abrasivos.
Limpie el calibrador y los módulos de presión con un paño suave humedecido con agua o agua con jabón suave.
Calibración o reparación en el centro de servicio

La calibración, reparación o el mantenimiento sólo deberán ser efectuados por personal de servicio calificado. Si el calibrador presenta un fallo, primero compruebe las baterías y reemplácelas si es necesario.

Compruebe que se esté usando el calibrador de acuerdo con las instrucciones dadas en este manual. Si el calibrador no funciona correctamente, envíe una descripción del fallo con el calibrador. Los módulos de presión no necesitan acompañar el calibrador a menos que no estén funcionando correctamente. Asegúrese de embalar el calibrador en forma segura; utilice el embalaje original, en caso de estar disponible. Envíe el equipo, con el porte pagado y el seguro adecuado, al centro de servicio más cercano. Fluke no asume ninguna responsabilidad por daños durante el transporte.

El calibrador 725Ex de Fluke protegido por la garantía será reparado o reemplazado (a discreción de Fluke) con prontitud y devuelto a usted sin costo alguno. Consulte la Garantía que aparece en la parte posterior de la página de título, para conocer las condiciones de la misma. Si la garantía ha caducado o se superan los límites de funcionamiento, el calibrador será reparado y devuelto a un costo fijo.

Si el calibrador o módulo de presión no está protegido por los términos de la garantía, comuníquese con un centro de servicio autorizado para obtener una cotización del valor de la reparación.

Para localizar un centro de servicio autorizado o pedir repuestos, consulte la sección “Comunicación con Fluke” al comienzo del manual.

Repuestos

La tabla 9 lista el número de pieza de cada componente reemplazable.
Tabla 9. Repuestos

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Nº de pieza</th>
<th>Cant.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baterías alcalinas AA</td>
<td>Vea “Tabla 8. Baterías aprobadas”.</td>
<td>4</td>
</tr>
<tr>
<td>Tapa de la batería</td>
<td>2097832</td>
<td>1</td>
</tr>
<tr>
<td>Accesorio de montaje</td>
<td>2151981</td>
<td>1</td>
</tr>
<tr>
<td>Soporte inclinado</td>
<td>2097826</td>
<td>1</td>
</tr>
<tr>
<td>Puntas de prueba serie TL75</td>
<td>855742</td>
<td>1</td>
</tr>
<tr>
<td>Punta de prueba, roja</td>
<td>688051</td>
<td>1</td>
</tr>
<tr>
<td>Punta de prueba, negra</td>
<td>688066</td>
<td>1</td>
</tr>
<tr>
<td>Pinza de conexión AC72, roja</td>
<td>1670641</td>
<td>1</td>
</tr>
<tr>
<td>Pinza de conexión AC72, negra</td>
<td>1670652</td>
<td>1</td>
</tr>
<tr>
<td>Calcomanía de entrada</td>
<td>690948</td>
<td>1</td>
</tr>
<tr>
<td>CD-ROM de Fluke 725Ex (contiene el Manual de uso de Fluke 725Ex).</td>
<td>2406548</td>
<td>1</td>
</tr>
<tr>
<td>Diagrama de control de Fluke 725Ex</td>
<td>6800032</td>
<td>1</td>
</tr>
<tr>
<td>Información sobre seguridad de Fluke 725Ex</td>
<td>2151996</td>
<td>1</td>
</tr>
<tr>
<td>Manual de calibración Fluke 725Ex</td>
<td>2406553</td>
<td>1</td>
</tr>
</tbody>
</table>
Accesorios

Para obtener más información acerca de estos accesorios y sus precios, póngase en contacto con un representante de Fluke. A continuación se listan los módulos de presión de Fluke con sus números de modelo respectivos (véase la tabla 10). (Los modelos diferenciales también funcionan en el modo medición.) Comuníquese con un representante de Fluke para obtener información acerca de los nuevos módulos de presión no incluidos aquí.

- Bomba 700HTP 0 a 10000 psi.
- Bomba 700HTP 11,6 a 600 psi.
- Juegos de miniclavijas de termopares 700TC1 y 700TC2.

Compatibilidad con módulos externos de presión de Fluke

La salida de los módulos de presión Fluke 700PEx puede causar el desbordamiento de la pantalla de 5 dígitos del calibrador 725Ex o bien, producir valores demasiado bajos para leer si no se seleccionan las unidades apropiadas. Se evita este inconveniente al presentar OL en la pantalla, según lo indicado en la tabla 10.

Tabla 10. Compatibilidad con módulos de presión de Fluke

<table>
<thead>
<tr>
<th>Unidad de presión</th>
<th>Compatibilidad de módulos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psi</td>
<td>Disponible en todos los rangos de presión</td>
</tr>
<tr>
<td>Pulg. H₂O</td>
<td>Todos los rangos hasta 3000 psi</td>
</tr>
<tr>
<td>cm. H₂O</td>
<td>Todos los rangos hasta 1000 psi</td>
</tr>
<tr>
<td>Bar</td>
<td>Por encima de 15 psi</td>
</tr>
<tr>
<td>Mbar</td>
<td>Todos los rangos hasta 1000 psi</td>
</tr>
<tr>
<td>KPa</td>
<td>Disponible en todos los rangos de presión</td>
</tr>
<tr>
<td>Pulg. Hg</td>
<td>Disponible en todos los rangos de presión</td>
</tr>
<tr>
<td>mm. Hg</td>
<td>Todos los rangos hasta 1000 psi</td>
</tr>
<tr>
<td>Kg/cm²</td>
<td>Por encima de 15 psi</td>
</tr>
<tr>
<td>Número de modelo de Fluke</td>
<td>Rango</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Fluke-700P01Ex</td>
<td>0 a 10 pulg. H₂O</td>
</tr>
<tr>
<td>Fluke-700P24Ex</td>
<td>0 a 15 psi</td>
</tr>
<tr>
<td>Fluke-700P05Ex</td>
<td>0 a 30 psi</td>
</tr>
<tr>
<td>Fluke-700P06Ex</td>
<td>0 a 100 psi</td>
</tr>
<tr>
<td>Fluke-700P09Ex</td>
<td>0 a 1.500 psi</td>
</tr>
<tr>
<td>Fluke-700P27Ex</td>
<td>0 a 300 psi</td>
</tr>
<tr>
<td>Fluke-700P29Ex</td>
<td>0 a 3.000 psi</td>
</tr>
<tr>
<td>Fluke-700PA4Ex</td>
<td>0 a 15 psi</td>
</tr>
</tbody>
</table>
Especificaciones

Todas las especificaciones se aplican de +18 °C a +28 °C a menos que se especifique lo contrario. Todas las especificaciones suponen un período de calentamiento de 5 minutos.

Medición de tensión CC

<table>
<thead>
<tr>
<th>Rango</th>
<th>Resolución</th>
<th>Exactitud (% de la lectura + recuentos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 V (parte superior de la pantalla)</td>
<td>0,001 V</td>
<td>0,02 % + 2</td>
</tr>
<tr>
<td>10 V (parte inferior de la pantalla)</td>
<td>0,001 V</td>
<td>0,02 % + 2</td>
</tr>
<tr>
<td>90 mV</td>
<td>0,01 mV</td>
<td>0,02 % + 2</td>
</tr>
</tbody>
</table>

Coeficiente de temperatura -10 °C a 18 °C, +28 °C a 55 °C: ± 0,005 % del rango por °C

Fuente de tensión CC

<table>
<thead>
<tr>
<th>Rango</th>
<th>Resolución</th>
<th>Exactitud (% de la lectura + recuentos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mV</td>
<td>0,01 mV</td>
<td>0,02 % + 2</td>
</tr>
<tr>
<td>10 V</td>
<td>0,001 V</td>
<td>0,02 % + 2</td>
</tr>
</tbody>
</table>

Coeficiente de temperatura -10 °C a 18 °C, +28 °C a 55 °C: ± 0,005 % del rango por °C

Carga máxima: 1 mA

Medición y fuente de milivoltios*

<table>
<thead>
<tr>
<th>Rango</th>
<th>Resolución</th>
<th>Exactitud</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10 mV a 75 mV</td>
<td>0,01 mV</td>
<td>± (0,025 % + 1 recuento)</td>
</tr>
</tbody>
</table>

Tensión máxima de entrada: 30 V

Coeficiente de temperatura -10 °C a 18 °C, +28 °C a 55 °C: ± 0,005 % del rango por °C

*Selezione esta función pulsando [10]. La señal está disponible en la miniclavija del termopar.
Medición y fuente de mA CC

<table>
<thead>
<tr>
<th>Rango</th>
<th>Resolución</th>
<th>Exactitud (% de la lectura + recuentos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 mA</td>
<td>0,001 mA</td>
<td>0,02 % + 2</td>
</tr>
</tbody>
</table>

Coeficiente de temperatura -10 °C a 18 °C, +28 °C a 55 °C: ±0,005 % del rango por °C

Capacidad de excitación: 250 Ω a 20 mA

Medición de ohmios

<table>
<thead>
<tr>
<th>Rango de ohmios</th>
<th>Exactitud ± Ω*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 conductores</td>
</tr>
<tr>
<td>0 a 400 Ω</td>
<td>0,1</td>
</tr>
<tr>
<td>400 a 1,5 kΩ</td>
<td>0,5</td>
</tr>
<tr>
<td>1,5 a 3,2 kΩ</td>
<td>1</td>
</tr>
</tbody>
</table>

Coeficiente de temperatura -10 °C a 18 °C, +28 °C a 55 °C: ±0,005 % del rango por °C

Corriente de excitación: 0,2 mA

Tensión máxima de entrada: 30 V

* 2 conductores: No incluye la resistencia del conductor.
* 3 conductores: Supone conductores coincidentes

Fuente de ohmios

<table>
<thead>
<tr>
<th>Rango de ohmios</th>
<th>Corriente de excitación del instrumento de medición</th>
<th>Exactitud ± Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 a 400 Ω</td>
<td>0,15 a 0,5 mA</td>
<td>0,15</td>
</tr>
<tr>
<td>15 a 400 Ω</td>
<td>0,5 a 2 mA</td>
<td>0,1</td>
</tr>
<tr>
<td>400 a 1,5 kΩ</td>
<td>0,05 a 0,8 mA</td>
<td>0,5</td>
</tr>
<tr>
<td>1,5 a 3,2 kΩ</td>
<td>0,05 a 0,4 mA</td>
<td>1</td>
</tr>
</tbody>
</table>

Coeficiente de temperatura -10 °C a 18 °C, +28 °C a 55 °C: ±0,005 % del rango de resistencia por °C

<table>
<thead>
<tr>
<th>Resolución</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15 a 400 Ω</td>
<td>0,1 Ω</td>
</tr>
<tr>
<td>400 a 3,2 kΩ</td>
<td>1 Ω</td>
</tr>
</tbody>
</table>

Medición de frecuencia

<table>
<thead>
<tr>
<th>Rango</th>
<th>Resolución</th>
<th>Exactitud</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,0 a 1000,0 CPM</td>
<td>0,1 CPM</td>
<td>± (0,05 % + 1 recuento)</td>
</tr>
</tbody>
</table>
Especificaciones

<table>
<thead>
<tr>
<th>Rango</th>
<th>Exactitud (%) de la frecuencia de salida</th>
<th>Sensibilidad: 1 V pico a pico mínimo</th>
<th>Forma de onda: onda cuadrada</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 a 1000 Hz</td>
<td>± (0,05 % + 1 recuento)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,0 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,0 a 10,0 kHz</td>
<td>± (0,05 % + 1 recuento)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1 kHz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente de frecuencia

<table>
<thead>
<tr>
<th>Rango</th>
<th>Resolución</th>
<th>Exactitud (%)</th>
<th>Tipo</th>
<th>Rango</th>
<th>Exactitud en los modos medición y fuente</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,0 a 1000,0 CPM</td>
<td>0,1 CPM</td>
<td>± 0,05 %</td>
<td>B</td>
<td>600 a 800 °C</td>
<td>2,2 °C</td>
</tr>
<tr>
<td>1 a 1000 Hz</td>
<td>1 Hz</td>
<td>± 0,05 %</td>
<td></td>
<td>800 a 1000 °C</td>
<td>1,8 °C</td>
</tr>
<tr>
<td>1,0 a 10,0 kHz</td>
<td>0,1 kHz</td>
<td>± 0,25 %</td>
<td></td>
<td>1000 a 1800 °C</td>
<td>1,4 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>-200 a 0 °C</td>
<td>0,85 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 a 900 °C</td>
<td>0,7 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U</td>
<td>-200 a 0 °C</td>
<td>1,1 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 a 400 °C</td>
<td>0,75 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>-200 a 0 °C</td>
<td>1,5 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 a 1300 °C</td>
<td>0,9 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>XK</td>
<td>-200 a 100 °C</td>
<td>0,5 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-100 a 800 °C</td>
<td>0,6 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BP</td>
<td>0 a 800 °C</td>
<td>1,2 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>800 a 2500 °C</td>
<td>2,5 °C</td>
</tr>
</tbody>
</table>

Temperatura, termopares

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Rango</th>
<th>Exactitud en los modos medición y fuente</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>-200 a 0 °C</td>
<td>1,0 °C</td>
</tr>
<tr>
<td></td>
<td>0 a 1200 °C</td>
<td>0,7 °C</td>
</tr>
<tr>
<td>K</td>
<td>-200 a 0 °C</td>
<td>1,2 °C</td>
</tr>
<tr>
<td></td>
<td>0 a 1370 °C</td>
<td>0,8 °C</td>
</tr>
<tr>
<td>T</td>
<td>-200 a 0 °C</td>
<td>1,2 °C</td>
</tr>
<tr>
<td></td>
<td>0 a 400 °C</td>
<td>0,8 °C</td>
</tr>
<tr>
<td>E</td>
<td>-200 a 0 °C</td>
<td>0,9 °C</td>
</tr>
<tr>
<td></td>
<td>0 a 950 °C</td>
<td>0,7 °C</td>
</tr>
<tr>
<td>R</td>
<td>-20 a 0 °C</td>
<td>2,5 °C</td>
</tr>
</tbody>
</table>

Alimentación de lazo

- **Tensión:** 12 V
- **Corriente máxima:** 24 mA
- **Protegido contra cortocircuitos**
Excitación RTD (simulación)

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Rango °C</th>
<th>Exactitud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni 120</td>
<td>-80 a 260</td>
<td>0,2</td>
</tr>
<tr>
<td>Pt 100-385</td>
<td>-200 a 800</td>
<td>0,33</td>
</tr>
<tr>
<td>Pt 100-3926</td>
<td>-200 a 630</td>
<td>0,3</td>
</tr>
<tr>
<td>Pt 100-3916</td>
<td>-200 a 630</td>
<td>0,3</td>
</tr>
<tr>
<td>Pt 200-385</td>
<td>-200 a 630</td>
<td>0,3</td>
</tr>
<tr>
<td>Pt 500-385</td>
<td>-200 a 630</td>
<td>0,3</td>
</tr>
<tr>
<td>Pt 1000-385</td>
<td>-200 a 630</td>
<td>0,3</td>
</tr>
</tbody>
</table>

Resolución: 0,1 °C, 0,1 °F

Recuerda leer el manual de uso.

Fuente RTD: Envía impulsos de tan corta duración como 5 ms a transmisores de impulsos y PLC.

*2 conductores: No incluye la resistencia del conductor.

3 conductores: Supone conductores coincidentes con una resistencia total no superior a 100 Ω.
Medición de presión

<table>
<thead>
<tr>
<th>Rango</th>
<th>Resolución</th>
<th>Exactitud</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determinado por el módulo de presión</td>
<td>5 dígitos</td>
<td>Determinado por el módulo de presión</td>
<td>psi, pulg. H₂O a 4 °C, pulg. H₂O a 20 °C, pulg. H₂O a 60 °C, kPa, cm H₂O a 4 °C, cm H₂O a 20 °C, bar, mbar, kg/cm², mm Hg, pulg. Hg</td>
</tr>
</tbody>
</table>

Especificaciones generales

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura de operación</td>
<td>-10 °C a 55 °C</td>
</tr>
<tr>
<td>Temperatura de almacenamiento</td>
<td>-20 °C a 71 °C</td>
</tr>
<tr>
<td>Altitud operativa</td>
<td>3000 metros sobre el nivel medio del mar</td>
</tr>
</tbody>
</table>
| Humedad relativa (% HR en funcionamiento sin condensación) | 90 % (10 a 30 °C)
 | 75 % (30 a 40 °C)
 | 45 % (40 a 50 °C)
 | 35 % (50 a 55 °C)
 | no controlada < 10 °C |
| Vibración | Aleatoria 2 g, 5 a 500 Hz |

Marcas de conformidad del producto

- CE II 1 G EEx ia IIB 171 °C
- 0344 KEMA 04ATEX1303X
- Clase I Div. 1 Grupos B,C y D
- LR110460 Clase I Zona 0 Aex/Ex ia IIB 171 °C
- 2004.1573226
- Ta = -10 °C… +55 °C
- Fabricado por Martel Electronics Inc.,
 1F Commons Drive, Londonderry, NH, EE.UU.

EMC

Requisitos de alimentación eléctrica

4 baterías alcalinas AA. Consulte "Baterías aprobadas"

Dimensiones

96 x 200 x 47 mm. (3,75 x 7,9 x 1,86 pulgadas)
Parámetros de entidad

Para conocer los parámetros de entidad, consulte el diagrama de control de Fluke 725Ex para uso en áreas con peligro de explosión.