

FEATURES

- Frequency Range : 9kHz ~ 3.25GHz
- 0.025ppm Frequency Stability and 1ppm Aging Rate
- RBW : 1Hz ~ 1MHz (3dB), 6dB EMI Filter : 200Hz, 9kHz, 120kHz, 1MHz
- Fastest Sweep Time : 204µs
- Sensitivity : -149dBm/Hz (@PreAmp on)
- Built-in Preamplifier, 50dB Attenuator, and Sequence Function
- Built-in EMC Pretest Function
- Built-in 2FSK Analysis, AM/FM/ASK/FSK Demodulation & Analysis
- Built-in P1dB Point, Harmonic, Channel Power, N-dB Bandwidth, OCBW, ACPR, SEM, TOI, CNR, CTB, CSO, Noise Marker, Frequency Counter, Time Domain Power, Gated Sweep
- Built-in Spectrogram, Topographic and Split-window Display Modes
- Remote Control EMI Measurement Software : SpectrumShot
- Remote Control Interface : LAN, USB, RS-232
- Options : Tracking Generator, GPIB Interface, Battery Pack

DISTRIBUTOR :

INSTEK AMERICA CORP. 5198 Brooks Street Montclair, CA 91763, U.S.A. T +1-909-399-3535 F +1-909-399-0819 E-mail: sales@instekamerica.com

Japan Subsidiary

TEXIO TECHNOLOGY CORPORATION. 7F Towa Fudosan Shin Yokohama Bldg., 2-18-13 Shin Yokohama, Kohoku-ku, Yokohama, Kanagawa Z22-0033 Japan T +81-45-620-2305 F +81-45-534-7181 E-mail: info@texio.co.jp

Korea Subsidiary

Korea Subsidiary GOOD WILL INSTRUMENT KOREA CO., LTD. Room No.503, Gyeonginro 775 (Mullae-Dong 3Ga, Ace Hightech-City B/D 1Dong), Yeongduengpo-Gu, Seoul 150093, Korea. T +82-2-3439-2207 E-mail: uniestele@muineteke.co.kr. E-mail : gwinstek@gwinstek.co.kr

Simply Reliable

Global Headquarters

GOOD WILL INSTRUMENT CO., LTD. No.7-1, Jhongsing Road, Tucheng Dist., New Taipei City 236, Taiwan T +886-2-2268-0389 F +886-2-2268-0639 E-mail: marketing@goodwill.com.tw

China Subsidiary GOOD WILL INSTRUMENT (SUZHOU) CO., LTD. No. 521, Zhujiang Road, Snd, Suzhou Jiangsu 215011 China T +86-512-6661-717 F +86-512-6661-7277 E-mail: marketing@instek.com.cn

Malaysia Subsidiary GOOD WILL INSTRUMENT (M) SDN. BHD.

No. 1-3-18, Elit Avenue, Jalan Mayang Pasir 3, 11950 Bayan Baru, Penang, Malaysia T +604-6111122 F +604-6115225 E-mail: sales@goodwill.com.my Europe Subsidiary

GOOD WILL INSTRUMENT EURO B.V. De Run 5427A, 5504DG Veldhoven, The Nether T +31(0)40-2557790 F +31(0)40-2541194

GSP-9330 GD1BH

U.S.A. Subsidiary

TESTS MUST BE FAST!

GSP-9330 (9kHz ~ 3.25GHz)

CE	USB	LXI	DVI Output	RS-232	GPIB	PC Software	Micro SD/SDHC
----	-----	-----	---------------	--------	------	----------------	------------------

GSP-9330, a high test speed spectrum analyzer with 3.25 GHz, provides the fastest 204 μ s sweep speed. Users, via high speed sweep time, can easily handle and analyze modulation signals. The keys to handling modulated signals are fast sweep time and signal demodulation functions. In addition to the analog AM/FM demodulation and analysis function, GSP-9330 also provides digital signal ASK/FSK, and 2FSK demodulation and analysis capabilities. Nowadays, EMC issues are very crucial to product's design processes. Therefore, GSP-9330 has incorporated the EMC pretest solution to facilitate EMC tests. The simple and easy EMC pretest procedures from GSP-9330 can tremendously shorten users' product launch timeline.

CUSTOMERS

- Consumer Electronics
- Service and Maintenance
- Universities, Graduate Schools
- Military Industries
- Automotive Electronics
- · Telecom and communications Industries
- Distributors for RF-Instruments Instrument leasing Companies

APPLICATIONS

- For the Quick Check and Analysis of Spectral Characteristic • EMI Pre-compliance Testing
- Analyze ASK, FSK, AM, FM Signal Characteristics
- Monitor Satellite Uplink Signals From Satellite Uplink Truck
- Test Systems That Require a Very Compact Instrument
- Measure the Frequency Response of Cable, Attenuator, Filter and Amplifier

A. FAST SIGNAL SWEEP

B. MODULATED SIGNAL ANALYSIS

2FSK modulation, for its features of low design cost and low electricity consumption, is widely used by RF communications applications with low power and low data transmission speed characteristics. Nowadays, 2FSK modulation technology has been applied in various products and systems such as consumer electronics, automotive electronics, RFID, auto reading electricity meter, and industrial control devices, etc. 2FSK signal analysis measures parameters including carrier power, FSK frequency deviation, carrier frequency, and carrier frequency offset. Users can set the criterion in frequency deviation and carrier offset for fast test result determination.

RFID and optical communications systems often use Amplitude Shift Keying (ASK). Applications such as wireless telephone, paging systems, and RFID, etc. utilize Frequency Shift Keying (FSK). ASK/FSK demodulation and analysis measures parameters including AM depth, frequency deviation, carrier power, carrier frequency offset, symbol, and waveform. Users can set AM depth, frequency deviation, carrier power and carrier offset for Pass/Fail testing result. Data message is provided to determined preamble & sync function.

AM/FM Signal Analysis measures parameters including AM depth, frequency deviation, modulation rate, carrier power, carrier frequency offset and SINAD. Users can set the criterion in AM depth, frequency deviation, carrier power and carrier offset for fast test result determination. The GSP-9330 has a convenient AM/FM demodulation function to tune into AM or FM broadcast signals and listen to the demodulated signals.

2FSK Signal Analysis

2FSK

-A-	h f	- f	h f	A	A	Ą
	h +			Л		
		11	17	W	u u	
<u>(</u>	and the second second	100				
-		1				
-		10	-	1		***
		1		iner A	-	
1 11				in an		
1 1 1	1 2				12.11	
1 414	1 24		+14			
1 1 1 1	14					

FM

For spectrum analyzer, speed is the most important specification. GSP-9330 provides sweep speed up to 204 μ s. Users, via high speed sweep time, can identify and analyze various fast or transient signals such as frequency/amplitude modulation signals, Bluetooth frequency hopping signals, tuned oscillator or other interfering signals under ISM Band.

FM Signal Monitoring

GSP-9330

AM/FM Signal Demodulation & Analysis

AM

C. EMC PRETEST SOLUTION

GSP-9330 has the built-in EMI dedicated 200/9k/120k/1MHz filter, 20dB low noise amplifier and Quasi-Peak/Average detection mode to conduct radiation and conduction tests after collocating with the probe set.

GKT-008, the radiation test probe set, provides a complete near field test probe set to simplify the complex measurement procedures and to simulate 3m/10m far field tests from the labs. Using GKT-008 can greatly save engineers' debugging time and the money for going back and forth to the labs. GKT-008 can collocate with the Tracking Generator function of GSP-9330 to conduct EMS tests.

For conduction tests, GSP-9330 can collocate with LISN and Isolation Transformer to conduct electromagnetic conduction tests. If users concern EUT's large voltage variation or complexity, applying a Transient Limiter will make test equipment safer.

ANT-04/ANT-05

EMC Pretest	EMC Pretest Instruments Provided by GW Instek Are as Follows :				
GSP-9330	Spectrum Analyzer	Built-in complete EMC pretest solution			
GKT-008	EMI Near Field Probe Set	Provide probe set for near field signals, including ANT-04/ANT-05 field sensor PR-01 AC high voltage probe PR-02 Source contact probe			
GLN-5040A	LISN	LISN required by EMI conduction tests and it meets CISPR16-1-2:2006 regulations			
GIT-5060	Isolation Transformer	Different mains have different current leakages that will cause systems to have short circuit Isolation transformer prevents short circuit by isolating current loop			
GPL-5010	Transient Limiter	Transient Limiter will make test equipment safer if EUT has large voltage variation or complexity			

For more detailed information about EMC Pretest Solution, please visit "DETAILED EMC PRETEST SOULTION" documents.

D. GRAPHIC PROCESSING OF SIGNAL MONITORING

Spectrogram can simultaneously display power, frequency, and time. Frequency and power variation according to time changes can also be tracked. Especially, the intermittently appeared signals can be identified. Users, by using Spectrogram, can analyze the stability of signal versus time or identify the intermittently appeared interference signals in the communications system. Users can use two markers to find out the relation of power to frequency and time.

GSP-9330

Topographic uses color shade to show the probability distribution of signal appearance. This function allows users to directly understand the process of signal variation according to time changes that is beneficial to observe intermittent feeble signals or electromagnetic interference signals. Users can use two makers to find out the relation of power to frequency and percentage.

Split-Window allows two independent observations that are very convenient for monitoring two different frequency bandwidths.

Observe FM Signals by Spectrogram

Observe WiFi Signals by Topographic

Observe 4G LTE Signals by Split-Window Display

E. SIGNAL VERIFICATION, TEST AND ANALYSIS

Channel Power Measurement

Telecommunications and broadcasting service carriers will encounter distorted signals caused by adjacent channels' inter-modulation while transmitting modulated signals using communications channels. If the distorted signals are too large the communications quality of adjacent channels will be affected. The ACPR measurement can examine the leakage status that is conducive to identifying interference source.

The OCBW measurement can simultaneously display OCBW, channel power and PSD. OCBW's unit is shown by percentage. A measurement area containing bandwidth will be shown when OCBW is in use.

Spectrum Emission Mask

SEM measures out-of-channel emission which is defined by corresponding in-channel power. Users can set main channel's parameters, out-of-channel range, and limit line, etc. GSP-9330 has the built-in SEM settings of 3 GPP, WLAN 802.11b/g/n, Wimax 802.16 and self-defined communications system. SEM supports the Pass/Fail test function and lists frequency range for surpassing each out-of-channel limit. An alarm signal will be triggered if any measurement results that are not matched with SEM.

SEM

CATV System Parameter Tests

The built-in CNR/CSO/CTB functions of GSP-9330 are ideal for measuring performance of CATV amplifier and system.

Note: General CATV is 75 Ω . For GSP-9330, a 50 ~ 75 ohm adapter is needed.

CNR/CSO/CTB

TOI (Third Order Intercept)

Harmonic

adjusting RBW.

Time Domain Power Users can go to zero span setting and open marker to observe burst signals when measuring burst signal in time domain is required.

Phase Jitter and time (ns).

Marker Noise The marker noise function calculates the average noise level over a bandwidth of 1Hz, referenced from the marker position.

Gated Sweep

Radar or TDMA communications systems, via intermittently turning On/Off output power, control transmission signals. In order to monitor the power spectrum during the transmission process, the Gated Sweep function can initiate measurement only when signals appear. This function is ideal for measuring burst signals such as GSM or WLAN.

GSP-9330

Users can measure the linearity of non-linear systems and components such as receiver, low-noise amplifier and mixer by TOI which automatically tests effective carrier and measures inter-modulation sidebands.

Harmonic can easily measure the amplitude of fundamental frequency and as high as ten orders of harmonic frequency. This function can also measure amplitude(dBc) which is the ratio of harmonic and corresponding fundamental carrier. Total harmonic distortion(THD) can also be calculated by this function. The best harmonic information can be obtained by

The Phase Jitter function can rapidly measure phase noise produced by RF signal source's and oscillator's carrier deviation. This function can directly convert signal jitter to phase (rad)

F. PRODUCTION LINE APPLICATIONS

Sequence Function

The sequence function allows users to edit a sequence formulated by a series of steps directly from the instrument. Pause and delay can be inserted in the sequence to observe the test results. There are five sets of sequence for selection. Each sequence allows editing of 20 steps. Different sequence can be interactive and support each other. This function provides automatic editing without using the PC that is very convenient for assembly lines in which execute routine test procedures.

Limit Line Function

The limit line function, based upon the preset criteria of passing the test, can be used to directly determine whether the DUT passes the test. Test result not only can be shown on the LCD screen, but also an alarm signal output indication from the rear panel which is done by connecting a speaker or light device to show the test result.

Shorten Warm-Up Time

GSP-9330 utilizes the patented design of high efficient heat dissipation and feedback temperature control. After the instrument is turned on, the internal instrument can rapidly maintain a stable temperature so as to provide accurate amplitude measurement and deliver the frequency measurement with 0.025 ppm frequency stability.

Wake-Up Clock

Users can set up automatic wake-up time for each day of the week. By so doing, the purpose of GSP-9330 pre wake-up can be achieved. Pre wake-up is ideal for the lower temperature environment to conduct tests in the preset time.

G.USER FRIENDLY DESIGN

Status Icons show the interface status, power status, alarm status and etc of GSP-9330. Users can easily understand the setting status and test results of the instrument.

save time on reading user manual.

H.COMMUNICATIONS INTERFACE

Various Interface

File Storage and Video Output Provide USB Device, MicroSD interface for file storage. Quick Save function is also available for users to quickly retrieve display. Support DVI with 800 x 600 resolutions.

DVI Interface

The built-in Definition Help function allows users to immediately understand the parameters of Channel Power, OCBW, ACPR, SEM, Phase Jitter, N-dB Bandwidth & P1dB items so as to

GSP-9330

Provide USB Host, RS-232, LXI C(LAN), and GPIB(option) instrument control interface. Supported programs comply with IEEE488.2.

USB Device/MicroSD

I. SOFTWARE SUPPORT

PC Software - SpectrumShot

Users can use the external software Spectrum Shot for EMI pretest report management and assessment, remote control and waveform data recording for long periods of time.

Under the EMI Pre-test Mode, users can select the required CISPR EMI regulation for conduction and radiation measurement.

Under Get Trace mode, users can record the waveform data for long periods of time. It can be applied to spectrum monitoring for detecting any abnormal radio signals. The software will send out e-mail to inform users if any abnormal situation occurs.

Under the Remote Control mode, users can monitor wireless interference signals or observe signals for long periods of time.

	🙀 🛷 📷 - Ad Male 201102 Balades Clas A 112 annua Askes (Del pari palitari
	ne 11 22 13 Control Date Rep Alter Sector
	1410 Stag Constants
	Anne - CONTrat ILB (IFB 1738) Rube
	hale the - balance - 10 H - D - D
	NIN IN IN
	Page 1
	C Pages Fait Post (potentief or Page 1
	Inthis Palation Can API measure distance Structure people and Bie
	Securities: Louis installed Judichase of class & ITS at a securing Subset of 10 m
	(100 Beel
	2 Ablance 1 DMINES Reductor Conc STIL measure docence (2ml) and predictor
Munder warden and and the state of the	Artistical Tenantics Linux for related functions of class 8.122 of a surroung furthere of 10 m
	A MALE COM Red ADda (Table 1 1995 + COM Red DOMARS-1996 1 1995 +
	CDPE Bool B(1938b-HMB) 1 Nds + CDPE Bool E(100b-HDB) 1 (100s +
	-310 CEPE Inst COMMIN-ADDRO 1 LITER + 7991 Jun +
	and actual to mer chair the same . The
	and the car of the second seco

GM INSTEK 03.53.43 2011-18-01 Exale: 50480 Mart 0.00480m Art: 10.0-08	-	Trace SelectTrace*		T	111	н.	11 14	- Canal Decement
	Total Land	Sales Tracas	-	1000	-	-97	- I And	NAME OF ADDRESS
0.000		Clear & Write	-	-	nter		Markin	Reisen
V AANWAM WANNAA V		MaxNote	-				Meia	
		Martinet	-	-	SALE	-	100.00	Accession in the
A West Wa		View	-	-		: 23		- 15-
1 An west all other the part of the all the		v++	•	-	plet.		Trager	Lotal B
M Abdu Mie Asternia - A uM Absteration	E.		411	7	8	9		Preset
Elart 0 500MH2 Carcar 10 000MH2 Stree 10 500MH2	le i	Mare 12		4	5	6		Quick Yes
HUW Idelic VIW Idelic Sport 1.000Mitz Sweep 54 Tms. MasHold - 130.0.00m	11			0	÷	*		BK SP Eats

IVI Driver & LabVIEW Support

IVI Driver Supports LabView & LabWindows/CVI Programming. It is available on NI website.

J. VARIOUS AUGMENTING OPTIONS

Tracking Generator

Scalar Network Analysis

3dB frequency bandwidth

P1dB Point Measurement

and active filter.

TG option provides 0 to -50 dBm synchronized sweep output, conducts scalar network analysis (S11. S21) function as well as P1dB.

GSP-9330

The built-in tracking generator can swiftly and easily measure frequency response of cable loss, filter bandwidth, amplifier gain, mixer conversion loss, etc. The N-dB Bandwidth function measures 3dB bandwidth of Bandpass filter. SWR bridge should be connected with tracking generator to measure the return loss of antenna or filter.

Reflection loss

All active components have linear dynamic range for power output. Once output power reaches the maximum level, active component will enter the non-linear saturated area of P1dB point and cease amplifying signal intensity as well as produce harmonic distortion. It is very useful for P1dB point measurement in active components such as low noise amplifier, mixer

Battery Pack & Soft Carrying Case

Compact and light-weighted (4 kg) GSP-9330 can be powered by battery making it suitable for outdoor operations. Optional GSP-9330 battery pack (opt.02) has a battery life of two hours. Optional soft carrying case(GSC-009) provides convenience and protection to the instrument. GSP-9330 is equipped with 8.4 inches 800 x 600 pixels LCD display which yields clearer display results for outdoor operations.

- 1. LCD Display
- 2. F1~F6 Modifier keys
- 3. Function Keys
- 4. Power Key
- 5. Scroll Wheel, Arrow Keys
- 6. Enter, BK SP, Preset & Quick Save Keys 15. USB-B, LAN Port
- 7. Numeric Keys
- 8. RF Input Terminal
- 9. +7V DC Power Supply

- 10. Tracking Generator Output 19. REF Output
- 11. USB-A, Micro SD Port
- 12. Fan
- 13. DVI-I Port
- 14. RS-232 Port
- 16. IF Output

- 20. Alarm Output / Open Collector
- 21. Trigger Input / Gate Input Port

- 17. 3.5mm Headphone Jack
- 18. REF Input
- 22. GPIB Port (optional)
- 23. Battery Cover / Optional Battery Pack
 - 24. Power Socket

Accuracy	±(period since last adjustment x aging rate) + stability
Aging Pate	temperature + supply voltage stability ± 1 ppm max.
Aging Rate Frequency Stability Over Temperature	\pm 0.025 ppm
Supply Voltage Stability	± 0.02 ppm
FREQUENCY READOUT ACCURACY	
Start, Stop, Center, Marker	±(marker frequency indication x frequency reference
	+ 10% x RBW + frequency resolution)
Trace Points	Max. 601 points, Min. 6 points
MARKER FREQUENCY COUNTER	I
Resolution	1 Hz, 10 Hz, 100 Hz, 1 kHz
Accuracy	±(marker frequency indication X frequency referenc + counter resolution)
REQUENCY SPAN	
Range	0 Hz (zero span), 100 Hz ~ 3.25 GHz
Resolution	1 Hz
Accuracy	± frequency resolution
PHASE NOISE	
Offset from Carrier	
0 kHz 00 kHz	< -88 dBc/Hz < -95 dBc/Hz
MHz	< -113 dBc/Hz
ESOLUTION BANDWIDTH (RBW) FI	LTER
ilter Bandwidth	1 Hz ~ 1 MHz in 1-3-10 sequence
	200 Hz, 9 kHz, 120 kHz, 1MHz
ccuracy hape Factor	± 8%, RBW = 1MHz ; ± 5%, RBW < 1MHz <4.5 : 1
•	
IDEO BANDWIDTH (VBW) FILTER ilter Bandwidth	1 Hz 1 MHz in 1 2 10 conjunco
	1 Hz ~ 1 MHz in 1-3-10 sequence
MPLITUDE	
	200100 2000
leasurement Range	100 kHz ~ 1 MHz 1 MHz ~ 10 MHz
	10 MHz ~ 3.25 GHz
TTENUATOR	
nput Attenuator Range	0 ~ 50 dB, in 1 dB steps
AXIMUM SAFE INPUT LEVEL	
verage Total Power	<u>≤</u> +33 dBm
OC Voltage	± 50 V
dB GAIN COMPRESSION	
otal Power at 1st Mixer	> 0 dBm
otal Power at the Preamp	> -22 dBm
DISPLAYED AVERAGE NOISE LEVEL (
Preamp off	0 dB attenuation; RF Input is terminated with a 50Ω trace average≥40
kHz~100 kHz	< -93 dBm
00 kHz~1 MHz	< -93 dBm < -90 dBm - 3 x (f/100 kHz) dB
MHz~10 MHz	< -122 dBm
.7 ~ 3.25 GHz	< -116 dBm
Preamp on	0 dB attenuation; RF Input is terminated with a 500
	trace average≥40
00 kHz~1 MHz	< -108 dBm - 3 x (f/100 kHz) dB
MHz~10 MHz	< -142 dBm
A 1411 - A AT C''	< -142 dBm + 3 x (f/1 GHz) dB
EVEL DISPLAY RANGE	
EVEL DISPLAY RANGE	Log, Linear dBm, dBmV, dBuV, V, W
EVEL DISPLAY RANGE cales nits	Log, Linear dBm, dBmV, dBuV, V, W 0.01 dB
EVEL DISPLAY RANGE cales Jurits Marker Level Readout	dBm, dBmV, dBuV, V, W 0.01 dB 0.01 % of reference level
EVEL DISPLAY RANGE icales Jnits Aarker Level Readout evel Display Modes	dBm, dBmV, dBuV, V, W 0.01 dB 0.01 % of reference level Trace, Topographic, Spectrogram
EVEL DISPLAY RANGE icales Jnits Aarker Level Readout evel Display Modes Jumber of Traces	dB [¯] m, dBmV, dBuV, V, W 0.01 dB 0.01 % of reference level Trace, Topographic, Spectrogram 4
0 MHz~3.25 GHz EVEL DISPLAY RANGE Scales Jnits Aarker Level Readout evel Display Modes Number of Traces Detector frace Functions	dBm, dBmV, dBuV, V, W 0.01 dB 0.01 % of reference level Trace, Topographic, Spectrogram

9 kHz ~ 3.25 GHz 1 Hz

SPECIFICATIONS

FREQUENCY REFERENCE

FREQUENCY FREQUENCY Range Resolution

GSP-9330

stability over	
	1 year after last adjustment
	0 ~ 50 °C
ference accuracy	
eference accuracy	RBW/Span >=0.02 ; Mkr level to DNL>30 dB
elerence accuracy	Kbw/Span >=0.02, Wiki level to DNL>30 db
	RBW : Auto
	$E_{A-1} \subseteq H_{T} : P_{A} = \frac{1}{2} H_{T} : A_{A} = $
	Fc=1GHz;RBW=1kHz,VBW=10Hz;Average≥40 Typical
	Typical Typical
	-3dB bandwidth -6dB bandwidth
	Nominal
	Normal Bandwidth ratio: -60dB:-3dB
	-3dB bandwidth
	-SOB Daridwidtri
	Displayed Average Noise Level(DANL)to 18 dBm
	DANL to 21 dBm DANL to 30 dBm
	Auto or manual setup
	Input attenuator ≥10 dB
	Typical ; Fc≥ 50 MHz; preamp. off Typical ; Fc≥ 50 MHz; preamp. on
	Mixer power level (dBm) = input power (dBm) – attenuation (dB)
n a 50 Ω load. RBW	V 10 Hz; VBW 10 Hz; span 500 Hz; reference level = - 60 dBm;
	Nominal
	Nominal
	Nominal Nominal
1 a 50Ω load RBW	V 10 Hz; VBW 10 Hz; span 500 Hz; reference level = - 60 dBm;
	Nominal
	Nominal Nominal
	Log scale
	Linear scale Single/Split Windows
nal, RMS(not Ilear & Write,	

SPECIFICATIONS					
ABSOLUTE AMPLITUDE ACCURACY					
Absolute Point		; log scale; 1 dB/div; peak detector; 23°C±1°C; Signal at Reference Level			
Preamp Off Preamp On	± 0.3 dB ± 0.4 dB	Ref level 0 dBm; 10 dB RF attenuation Ref level 0 dBm; -30 dB RF attenuation			
FREQUENCY RESPONSE	1				
Preamp Off	Attenuation : 10 dB; Reference: 160 MHz; 20 ~ 30°C				
100 kHz ~ 2.0 GHz 2GHz ~ 3.25 GHz	± 0.5 dB ± 0.7 dB				
Preamp On	Attenuation: 0 dB; Reference: 160 MHz; 20 ~ 30°C				
1 MHz ~ 2 GHz 2 GHz ~ 3.25 GHz	± 0.6 dB ± 0.8 dB				
ATTENUATION SWITCHING UNCER	TAINTY				
Attenuator Setting Uncertainty	0 ~ 50 dB in 1 dB step ± 0.25 dB	Reference : 160 MHz, 10dB attenuation			
RBW FILTER SWITCHING UNCERT		Reference : 100 Min2, 100D attendation			
1 Hz ~ 1 MHz	± 0.25 dB	Reference : 10 kHz RBW			
LEVEL MEASUREMENT UNCERTAIN	TY				
	± 1.5 dB	20 ~ 30°C; frequency > 1 MHz; Signal input 0 ~ -50 dBm;			
Overall Amplitude Accuracy		Reference level 0 ~ -50 dBm; Input attenuation 10 dB; RBW 1 kHz; VBW 1 kHz; after cal; Preamp Off			
,	± 0.5 dB	ТурісаІ			
SPURIOUS RESPONSE					
Second Harmonic Intercept	25 dDm	Preamp off; signal input -30dBm; 0 dB attenuation			
	+35 dBm +60 dBm	Typical; 10 MHz < fc < 775 MHz Typical; 775 MHz \leq fc < 1.625 GHz			
Third-order Intercept		Preamp off; signal input -30dBm; 0 dB attenuation			
Input Related Spurious	> 1dBm < -60 dBc	300 MHz ~ 3.25 GHz Input signal level -30 dBm, Att. Mode, Att=0dB; 20-30°C			
Residual Response (Inherent)	<-90 dBm	Input terminated; 0 dB attenuation; Preamp off			
SWEEP					
SWEEP TIME	1				
Range	204 μs ~ 1000 s 50 μs ~ 1000 s	Span > 0 Hz Span = 0 Hz; Min resolution=10µs			
Sweep Mode	Continuous; Single	span = 0 mz, with resolution=10µs			
Trigger Source	Free run; Video; External				
Trigger Slope	Positive or negative edge				
RF PREAMPLIFIER Frequency Range	1 MHz ~ 3.25 GHz				
Gain	18 dB	Nominal (installed as standard)			
FRONT PANEL INPUT/OUTPUT					
RF INPUT					
Connector Type Impedance	N-type female 50Ω	Nominal			
VSWR	<1.6:1	300 kHz ~ 3.25 GHz ; Input attenuator ≥10 dB			
POWER FOR OPTION					
Connector Type Voltage/Current	SMB male DC +7V/500 mA max	With short-circuit protection			
USB HOST		with short circuit protection			
Connector Type	A plug				
Protocol	Version 2.0	Support Full/High/Low speed			
MICRO SD SOCKET Protocol	SD 1.1				
Support Cards	Micro SD, Micro SDHC	Up to 32GB capacity			
REAR PANEL INPUT/OUTPUT					
REFERENCE OUTPUT					
Connector Type Output Frequency	BNC female	Neminal			
Output Frequency Output Amplitude	10 MHz 3.3V CMOS	Nominal			
Output Impedance	50 Ω				
REFERENCE INPUT					
Connector Type Input Reference Frequency	BNC female 10 MHz				
Input Amplitude	-5 dBm ~ +10 dBm				
Frequency Lock Range	Within \pm 5 ppm of the input reference frequency				
ALARM OUTPUT Connector Type	BNC female	Open-collector			
TRIGGER INPUT/GATED SWEEP INPU					
Connector Type	BNC female				
Input Amplitude	3.3V CMOS				
Switch	Auto selection by function				
LAN TCP/IP INTERFACE Connector Type	RJ-45				
Base	10Base-T; 100Base-Tx; Auto-MDIX				
USB DEVICE					
Connector Type	B plug Version 2.0	For remote control only; supports USB TMC			
Protocol	¥CI 31011 2.0	Supports Full/High/Low speed			

SPECIFICATIONS		
onnector Type npedance	SMA female 50 Ω	Neurinel
Frequency	886 MHz	Nominal Nominal
Dutput Level	-25 dBm	10 dB attenuation; RF input : 0 dBm @ 1 GHz
	25 05.11	
onnector Type	3.5mm stereo jack, wired for mono operati	01
IDEO OUTPUT	sistin steres jack, when for mone operation	
onnector Type	DV/LL (integrated analog and digital) Singl	e Link. Compatible with VGA or HDMI standard through adapter
	DVI-I (Integrated analog and digital), Singi	Elink. Compatible with VGA of HDIVIT standard through adapter
S-232C INTERFACE		
onnector Type	D-sub 9-pin female	Tx , Rx , RTS , CTS
PIB INTERFACE (OPTIONAL)		
onnector Type	IEEE-488 bus connector	
C POWER INPUT		
ower Source	AC 100 V ~ 240 V, 50/60 Hz	Auto range selection
ATTERY PACK (OPTIONAL)		
attery Pack	6 cells, Li-Ion rechargeable, 3S2P	With UN38.3 Certification
oltage	DC 10.8 V	
apacity	5200 mAh/56Wh	
GENERAL		
nternal Data Storage	16 MB nominal	
ower Consumption	< 65 W	
/arm-up Time	< 30 minutes	On anothing
emperature Range	+5 °C ~ + 45 °C -20 °C ~ + 70 °C	Operating Storage
Dimensions & Weight	350(W) x 210(H) x 100(D) mm, Approx. 4.	
	13.8 (W) x 8.3 (H) x 3.9 (D) inch, Approx. 9.9	
RACKING GENERATOR (OPTION	AL)	
requency Range	100 kHz ~ 3.25 GHz	
Putput Power	-50 dBm ~ 0 dBm in 0.5 dB steps	
bsolute Accuracy	± 0.5 dB	@160 MHz, -10 dBm, Source attenuation 10 dB, 20 ~ 30°C
Output Flatness	Referenced ~ 160 MHz, -10 dBm	
	100 kHz ~ 2 GHz	± 1.5 dB
	2 GHz ~ 3.25 GHz	± 2 dB
Output Level Switching Uncertainty	± 0.8 dB	Referenced to -10 dBm
larmonics	< -30 dBc	Typical, output level = -10 dBm
everse Power	+30 dBm max.	
onnectorType npedance	N-type female	Newing
Dutput VSWR	50 Ω	Nominal
•	< 1.6:1	300 kHz ~ 3.25 GHz, source attenuation≥12 dB
	n the GSP-9330 is powered on for at least	: 30 minutes to warm-up to a temperature of 20 $^\circ\!\mathbb{C}$ to 30 $^\circ\!\mathbb{C}$,
unless specified otherwise.		
ORDERING INFORMATION		OPTIONS
GSP-9330 3.25 GHz Spectrum A	nalvzer	Opt.01 Tracking Generator Opt.03 GPIB Interface
-		Opt.02 Battery Pack
EMC Pretest Solution : GKT-008 GLN-5040A	EMI Near Field Probe Set	OPTIONAL ACCESSORIES
GLN-5040A GIT-5060		GSC-009 Soft Carrying Case
GTT-5060 GPL-5010	Isolation Transformer Transient Limiter	GRA-415 Rack Adapter Panel
		FREE DOWNLOAD
CCESSORIES :	OM (with Owick Start Cuide User Menual	SpectrumShot PC Software for Windows System (available on GW Instek website)
Programming Manual, SpectrumShot Softv	COM (with Quick Start Guide, User Manual,	IVI Driver Supports LabVIEW/LabWindows/CVI Programming (available on NI webs
rogramming manual, opecaramoner cont		
Related Products Informa	tion :	
GKT-008 Near Field Probe	GLA-5040A LISN	GIT-5060 Isolation Transformer GPL-5010 Pulse Limiter

13

GSP-9330

