POWER ANALYZER PW6001

Improve Power Conversion Efficiency

World-class accuracy in measurement and analysis of DC to high-frequency signals with a single device. The next-generation POWER ANALYZER.

Achieving true power analysis

DC, 0.1Hz to 2 MHz frequency bandwidth

A wide frequency range is required for power measurement due to the acceleration of switching devices, especially SiC. High accuracy, broadband, and high stability. The PW6001's world-class technology-based fundamental performance makes in-depth power analysis a reality.

	01 Speci U	Ners 3		and they
Um	97.005 V	Pi	0.75974kW	
Uwe	97.397 V	Pret	0.75963kW	
User	96.937 V	Sı	0.78187kVA	and and a second
Uxe	97.005 V	See	0.76469kVA	N
Int	0.0501 A	O1	-0.10300kve	and the second s
Int	7.5943 A	Q ₁₀₀	-0.08787km	122
Int	7.8886 A	λı.	-0.97194	
Int	8.0581 A	#1	- 13.606 *	
Uxt	0.000 V	OFF		
Uar-	135.864 V	71	100.000 🛪	C alone and
U+r-	-138.000 V	Luq	0.00000kW	
Int	0.0000 A	OFF		2 item
Inc	14.2740 A	UDFI	48.5026	15 Hose Council
Inte	-14.4671 A	UDF	271.864	32 I.L.
OFF		UDFR	5.84079k	
f i	59.9753 Hz	WPi-	4.8448 Wh	

±0.02%* basic accuracy for power Strengthened resistance to noise and temperature fluctuations in the absolute pursuit of measurement stability

The custom-shaped solid shield made completely of finely finished metal and optical isolation devices used to maintain sufficient creepage distance from the input terminals dramatically improve noise resistance, provide optimal stability, and achieve a CMRR performance of 80 dB/100 kHz. Add the superior temperature characteristics of $\pm 0.01\%$ /°C and you now have access to a power analyzer that delivers top-of-the-line measurement stability.

*Device accuracy only

18-bit resolution, 5 MS/s sampling

Measurements based on sampling theorem are required to perform an accurate power analysis of PWM waveforms. The Hioki PW6001 features direct sampling of input signals at 5 MS/s, resulting in a measurement band of 2 MHz. This enables analysis without aliasing error.

TrueHD 18-bit converter* measures widely fluctuating loads with extreme accuracy

A built-in 18-bit A/D converter provides a broad dynamic range. Even loads with large fluctuations can be shown accurately down to tiny power levels without switching the range. Further, a digital LPF is used to remove unnecessary high-frequency noise, for accurate power analysis.

Conversion efficiency measurement during mode measurement without switching ranges

*True HD : True High Definition

Achieve lightning fast calculations for 5 independent signal paths at the same time with the Power Analysis Engine II

Calculations for up to five independent signal paths (period detection/broadband power analysis/ harmonic analysis/waveform analysis/FFT analysis) are independently and digitally processed, eliminating any effects one may have on another. Achieve a 10 ms data update speed while maintaining full accuracy through high-speed processing.

* AAF (Anti-aliasing filter): This filter prevents aliasing errors during sampling.

Functions and Characteristics

If you already have the PW6001, these functions will be added with the firmware version update (free of charge).

Max Speed 10 ms, Maximum 12 ch* **High Accuracy Power Calculation**

Data updates in 10 ms to 200 ms. Make high speed calculations while maintaining high accuracy. Achieve measurement stability with original digital filter technology, and measure power after automatically tracking frequency fluctuations from 0.1 Hz.

181	12 mile (1	light \$1 March 1	RT. Berriffit die	1000
COLUMN TWO	CONTRACTOR OF A	ALC: NOT CHARLES	20 Processing of the second	
Unit	97.005 V		0.75974kH	
Uer	97 997 V	Contraction of the second	0.75983kW	
Um	96.937 V		0.78187kVA	
Uer	97.005 V	Bee	0.78469kVA	- N
Lun	8.0581 A	- Q.	-0.18988km	
Lee	7.5049 A	Q	-0.08787km	
E van	7.0000 A	A:	-0.97194	
Lat	8.0581 A	20 Pt	- 10.008 *	
List	0.000 V	OFF		
Line	105.884 V	- T -	100.000 #	A LOCAL DRIVE
Line	-138.000 V	Contract of the second	0.00000kW	Comment of the local division of the local d
E au	0.0000 A	OFF		
Law	14.2743 A	UDF:	48.6028	
Lan	-14.4871 A	UDH:	271.864	12.00
OFF	College College	UDPE	6.84070k	
f1	59.0753 Hz	MP-	4.8448 Wh	

* Two 6-channel model devices, during synchronized function usage

Simple, high-precision efficiency and loss calculations

When measuring DC/AC converter efficiency, accuracy is required not only for AC but also DC. The basic DC measurement accuracy of the PW6001 is ±0.02%, enabling you to make accurate and stable efficiency measurements.

Setting up efficiency calculation formulas for power conditioners and similar equipment is simple on the dedicated screen. Simultaneously display loss and efficiency calculations for a maximum of four systems.

*Device accuracy

Independent harmonic analysis for a maximum of 6 systems (wideband/IEC)

0.1 Hz to 300 kHz fundamental frequency, 1.5 MHz analyzable bandwidth. Comes equipped with IEC61000-4-7-compliant harmonic analysis and up to 100th order wideband harmonic analysis.

Synchronize inverter input/output and each fundamental wave

Applications

- Motor fundamental wave analysis
- Wireless power transmission waveforms
- Measuring distortion ratio of power conditioner output waveforms

Extensive Current Sensor Lineup Achieve a Combined Basic Accuracy of ±0.04%

Choose the best sensor for your application: the pullthrough type for highly accurate and high current measurements up to 1000 A, the clamp type for quick and easy wire connection, or the direct input type for high accuracy and broadband. Connect a 100 MHz band sensor for oscilloscopes for even more options.

PW6001 comes equipped with a sensor power line built-in. Automated recognition functions make setup a cinch.

*±0.075% = accuracy in combination with PW9100

Large-capacity waveform storage for waveform analysis comparable to oscilloscopes

Waveform Storage of 1 MWord × (voltage-current 6 ch + Motor Analysis 4 ch). The torque sensor and encoder signals are displayed along with the voltage and current waveforms.

A range of trigger functions are also included. Cursor measurement and waveform zoom functions also render oscilloscopes unnecessary for waveform analysis.

Analyze frequencies up to 2 MHz across 2 channels. Specify any waveform analysis range you like and view the 10 highest peak values and frequencies. Observe frequency components that do not show up in harmonics and save the measured results.

UP Flat Frequency Characteristics

Frequency characteristics are flat up to 1 MHz even when the power factor is zero. Use together with the Current Sensor Phase Shift Function to make highly accurate low power factor measurements of high-frequency waves. Also ideal for loss assessment of high-frequency transformers and reactors.

* Options to further improve high-frequency wave phase characteristics available Contact us for more information

UP D/A Monitor

View up to 8 channels of temporal fluctuations in measured values. Voltage, current, power, frequency and other parameters are updated at the fastest rate of 10 ms, allowing you to observe even the tiniest variations.

Applications

Power conditioner FRT Analysis

Motor Transient State Power Analysis

FRT (Fault Ride Through) : Ability to continue operation despite system disturbance in the power conditioner or similar systems

Easily check correlations in measured values for up to two systems simultaneously. Plot physical quantities other than measured values as well by using it together with the user defined calculation function.

Applications

- Motor characteristics analysis
- Transformer characteristics analysis

Power conditioner MPPT Analysis

MPPT: Maximum Power Point Tracker

Our original virtual oversampling technology, evolved. Make phase compensation equivalent to 2 GS/s oscilloscopes a reality while maintaining 5 MS/s 18-bit high resolution. Perform current sensor phase compensation with a 0.01° resolution, and measure power more accurately (Ver. 2.00 and later). With the Current Sensor Phase Shift Function, you can now achieve even more accurate high frequency, low power factor power measurements.

as phase compensation value (please refer to instruction manual version 03 or later)

Virtual Oversampling: Technology where deskewing processing is performed virtually within the device at a much higher sampling frequency than the actual sampling frequency.

Complex calculation formulas settable on the device

Set equations to compute measurement values any way you want. Enter up to 16 calculation formulas, including functions like sin and log. Calculation results can be used as parameters for other calculation formulas, enabling complex analysis.

Applications

- · Calculate multisystem efficiency and loss with solar power modules and similar equipment
- Calculate Ld.Lq for motor vector control
- Calculate transformer current B and H utilizing Epstein's Method

Supports various power analysis o svstems

Improved connectivity to PCs over LAN. Remotely operate the PW6001 using a standard browser from any PC, tablet, or smartphone via the HTTP server function. Acquire files through the network with the FTP server function. LabVIEW driver and MATLAB Toolkit are also available.

* LabVIEW is a registered trademark of NATIONAL INSTRUMENTS *MATLAB is a registered trademark of Mathworks, Inc.

Specially designed for current sensors to achieve highly precise measurement

With direct wire connection method

The wiring of the measurement target is routed for connecting to the current input terminal. However, this results in an increase in the effects of wiring resistance and capacitive coupling, and meter loss occurs due to shunt resistance, all of which lead to larger accuracy uncertainty.

Measurement example using the direct wire connection method

Advantages of current sensor method

A current sensor is connected to the wiring on the measurement target. This reduces the effects of wiring and meter loss, allowing measurements with wiring conditions that are close to the actual operating environment for a highly efficient system.

Measurement example using the current sensor method

Compared to the direct wire connection method, measurement with conditions closer to the actual operation environment of a power converter is achieved.

Seamless operability

Simple settings and intuitive operating interface

Enter handwritten memos on the screen, or use the onscreen keypad

9-inch touch screen with soft keypad

Build a 12-channel power meter using "numerical synchronization"

For multi-point measurements, use the numerical synchronization function to transfer power parameters from the slave device to aggregate at the master in realtime, essentially enabling you to build a 12-channel power analysis system

- · Real-time display of slave instrument measurement values on master instrument screen
- Real-time efficiency calculations between master/slave
- · Save data for 2 units on recording media in master instrument
- Use the slave's measured values on the master's userdefined calculations

Wide range of Motor Analysis functions

(Motor Analysis and D/A output model)

Enter signals from torque meters and speed meters to measure motor power. In addition to motor parameters such as motor power and electrical angle, output signals from insolation meters and wind speed meters can also be measured.

			٩٩	° ∳°©
Operatir	ng mode	Single	Dual	Independent input
0	ch A Torque		Torque	Voltage/ Pulse
0	ch B	Encoder A phase signal	Torque	Voltage/ Pulse
0	ch C	Encoder B phase signal	RPM	Pulse
0	ch D	Encoder Z phase signal	RPM	Pulse
Measurement targets		Motor x 1	Motor x 2	Pyranometer/ anemometer and other output signals
Measurement parameters		Electric angle Rotation direction Motor power RPM Torque Slip	Motor power x 2 RPM x 2 Torque x 2 Slip x 2	Voltage × 2 & Pulse × 2 or Pulse × 4

Simply transfer waveforms with "waveform synchronization"

Achieve real-time* transfer of 5 MS/s 18-bit sampling data. Measurement waveforms on the slave instrument are displayed without modification on the master unit, paving the way for new applications for power analyzers, such as measurement of the voltage phase difference between two separate devices.

Display max. 6 channels of waveforms for master and slave

data for max. 3 channels

- · Real-time display of slave instrument waveforms on master instrument screen
- · Harmonic analysis and fundamental wave analysis for master instrument and slave instrument
- Simultaneously measure waveforms on master device while using the slave to trigger
- * For both master instruments and slave instrument, waveform synchronization operates only when there are 3 or more channels. Max. ±5 sampling error.

Analog Output and 1 MS/s Waveform Output (Motor Analysis and D/A output model)

Output analog measurement data at update rates of up to 10ms. Combine with a data logger to record longterm fluctuations, and use the built-in waveform output function to output voltage and current at 1 MS/s*.

*During waveform output, accurate reproduction is possible at an output of 1 MS/s and with a sine wave up to 50 kHz.

Applications

EV/HEV inverter and motor analysis

5 MS/s speed and high 18-bit resolution make SiC measurements a reality

High resolution is required for the high precision measurement of PWM waveforms for SiC semiconductors with low ON resistance. TrueHD 18-bit is achieved at a level of precision that has never been seen before.

GRADE Advanced electrical angle measurement function

Comes equipped with electrical angle measurement necessary for vector control analysis via dq coordination systems as well as high efficiency synchronous motor parameter measurements. Measure voltage and current fundamental wave components based on encoder pulses in real time. In addition, analyze 4 quadrants of torque and rotation through detecting the forward/reverse from A-phasic and B-phasic pulses.

Calculate the Ld and Lq values with user-defined operation

* For more information about electrical angle measurements, please refer to the "HIOKI Power Analyzer PW6001's PMSM Parameter Identification Methodology" available on the HIOKI website.

Calculate transient state power with 10 ms high accuracy and high speed

Measure power transient states, including motor operations such as starting and accelerating, at 10ms update rates. Automatically measure and keep up with power with fluctuating frequencies, from a minimum of 0.1 Hz.

Even during frequency fluctuations from low to high, the fundamental waveform is automatically pursued. Comes equipped with Δ -Y and Y- Δ conversion while calculating with a high degree of accuracy.

Simultaneous measurement of 2 motor powers

The PW6001 is engineered with the industry's first built-in dual mode motor analysis function that delivers the simultaneous analysis of 2 motors. Simultaneous measurement of the motor power for HEV driving and power generation is now possible.

Chopper circuit reactor loss measurement

High-frequency and low power factor device evaluation

Reactors are used for high harmonic current suppression as well as the voltage step up/down of chopper circuits. The PW6001's outstanding high frequency characteristics, highspeed sampling, and noise-suppressing performance are extremely effective in evaluating high-frequency, low power factor devices.

Harmonic analysis synchronized with switching frequencies

With the PW6001 you can perform harmonic analysis of fundamental waves up to 300 kHz with a band frequency of 1.5 MHz. For reactors used by chopper circuits, measure phase angles and RMS values for the current and voltage of each harmonic order through harmonic analysis synchronized with the switching frequency.

Current Sensor Phase Shift Function

In addition to the PW6001's flat, broad frequency characteristics, sensor phase error compensation allows highly accurate high-frequency and low power factor device analysis.

Circuit impedance analysis

Calculate circuit impedance, resistance, and inductance by using harmonic analysis results and user defined calculations. X-Y plot functions are especially effective for impedance analysis.

- Impedance Z $[\Omega]$ = fundamental frequency voltage / fundamental frequency current
- Serial resistance RS $[\Omega] = Z \times \cos$ (voltage phase angle current phase angle)
- Serial inductance Ls [H]
- = Z × sin (voltage phase angle current phase angle) / (2 × π × frequency)

PV Power Conditioner (PCS) Efficiency Measurement

Supports PCS-specific measurements

Simultaneously display the necessary parameters for PCS such as efficiency, loss, fundamental wave reactive power Qfnd, DC ripple ratio, three-phrase unbalanced factor, etc. Easily check the required measured items for improved test efficiency. In addition, by setting the DC power sync source to the output AC power channel, you can perform DC output and stable efficiency measurements perfectly synchronized with the output AC.

P4: DC power (panel output) P123: 3-phase power (power conditioner output) η1: Conversion efficiency Urf4: Ripple rate

Uthd1: Voltage total harmonic distortion Uunb123: Unbalance rate Qfnd123: Fundamental wave reactive power

Simplify the evaluation system

An evaluation system using simple connections can be configured in models with Motor Analysis and D/A output options. With the D/A output function, all ch voltage and currents are waveform output at 16 bit and 1 MS/s. Even if differential probes or current probes are not available, waveform observations can be performed alongside a recorder. In addition, when using the Motor Analysis channel as an input trigger, you can make highly accurate analysis of simulated power sources for power grids or PCS waveforms.

Harmonic analysis and higher order harmonic analysis (noise analysis)

Equipped with IEC standard mode supporting IEC61000-4-7. Arbitrarily set THD calculated upper limit orders also based on the standard's requirements. In addition, measure 2 kHz – 150 kHz high-order harmonics (noise that is not synchronized with the power frequency) through FFT analysis.

General CTs are not defined for accuracy beyond 60Hz. On the other hand, Hioki current sensors are guaranteed for accuracy even for harmonic measurements.

Measure output harmonics and noise through input waveform FFT analysis

Perform frequency measurements required for each PCS test with world-class accuracy and stability. Achieve highly accurate frequency measurement values for a maximum of 6 ch (12 ch when there are two devices) while measuring each parameter at the same time.

* ±0.01 Hz fundamental accuracy is defined for cases where the data update is over 50 ms. Please contact us for even more precise frequency measurement.

Power conversion for wind power generation

Simultaneous analysis of system and power generation

With the dual vector display, you can see the 3-phase balancing conditions for both the system and power generation at a glance.

PCS efficiency measurements

Perfectly synchronize and measure a two-system PCS by using the numerical synchronization function.

All power parameters can be aggregated on the master instrument, and the efficiency for each or the overall efficiency can be calculated and displayed.

Test and evaluate substations, plants and railroads

Measure phase difference between 2 separate points

Use the waveform synchronization function to measure the phase relationship between 2 points separated by a maximum distance of 500 m. Due to insulation with an optical connection cable, measurement can be performed safely even if the ground potential between the 2 points is not the same.

D/A output waveforms captured 500m away

Transfer voltage/current waveforms taken by the slave instrument located as far as 500m away and output the signals from the master device. When combined with a Hioki MEMORY HiCORDER, timing tests and simultaneous analysis of multiple channels for 3-phase power are possible.

Max. analog 32 channels + logic 32 channels MEMORY HiCORDER MR8827

* The waveform that is output has a delay of 7 µs to 12 µs, depending on the distance.

Interface

Names of parts

USB flash drive —	
GP-IB	Data viewable through dedicated application Command control
	Data viewable through dedicated application Command control Bluetooth® logger connection
RS-232C	Send the D/A output of values measured with the PW6001 (maximum of 8 items) wirelessly to the Hioki Wireless Logging Station LR8410 using the dedicated cable and Bluetooth® serial conversion adapter. (Approx. 30m* line of sight)The observable output resolution is dependent on the LR8410's resolution. * The presence of obstructions (walls, metal, etc.) may shorten the communication range or destabilize the signal. * Bluetooth® is a trademark of Bluetooth SIG, Inc. and licensed for use by HIOKI E.E. CORPORATION.
External I/O	START/ STOP/ DATA RESET control Terminals shared with RS-232C, ±5 V/200 mA power supply possible
LAN	Gbit LAN supported Command control View data in free dedicated application

	RS-232C, External I/O GP-IB LAN Synchronous control D/A output Motor Analysis Input Current probe input
Synchronous control	Optical connection cable connector, Duplex-LC (2-core)
D/A output (PW6001-11 to 16 only)	Switching for 20 channels of analog output or maximum 12 channels of waveform + 8 channels of analog output
Current probe input component	Power can also be supplied from the PW6001 to Probe1 or Probe2 by using the sliding cover.
Motor Analysis input component	Input signals from torque meters or rotation meters to measure motor power. Measure motor signals including electric angle and motor power from instruments such as actinometers and anemometers.
USB flash drive	Save waveform data/measured data (csv) Save screen copy (bmp) Save interval data (csv) in real time at the fastest interval of 10 ms
64 MB internal memory	Save interval data and send it to a USB flash drive later

Software

Download the software and drivers below from the HIOKI website at www.hioki.com

PC Communication Software PW Communicator

PW Communicator is a dedicated application software for communicating between a PW6001 power meter and a PC. Free download is available from the Hioki website. The application contains convenient functions for setting the PW6001, monitoring the measurement values, acquiring data via communication, computing efficiency, and much more.

Value monitoring	Display the PW6001's measurement values on the PC screen. Freely select up to 64 values, such as voltage, current, power, and harmonics.
Waveform monitoring	Monitor the voltage, current, and waveforms measured by the meter right on the PC screen.
Meter setting	Configure the connected PW6001 from the PC screen.
Measure with multiple units	Compute the input/output efficiency of a power converter and similar operations when using multiple units of PW6001. In addition to the PW6001, you can also batch control other Hioki power meters, such as the PW3335, PW3336, and PW3337.
Save in CSV format	Record 180 or more measurement data to a CSV file at fixed intervals. The shortest interval between recordings is 200 ms.
Operating environment	PC/AT-compatible
OS	Windows 10/Windows 8/Windows 7 (32 bit/64 bit) *Windows is a registered trademark of Microsoft Corporation.
Memory	2GB or more recommended
Interface	LAN, RS-232C, GP-IB

BRADE LabVIEW driver

Obtain data and configure measurement systems with the LabVIEW driver. *LabVIEW is a registered trademark of NATIONAL INSTRUMENTS.

GRADE MATLAB Toolkit

Control the PW6001 with MATLAB through a LAN connection and read the PW6001's waveform binary data. *MATLAB is a registered trademark of Mathworks, Inc.

Specifications

Power measurement

	3-phase/	3-wire (3P3W), 1-phase/3-wi 2M, 3V3A, 3P3	W3M), 3-phas	1		
	CH1	CH2	CH3	CH4	CH5	CH6	
Pattern 1	1P2W	1P2W	1P2W	1P2W	1P2W	1P2W	
Pattern 2	1P3W / 3	3P3W2M	1P2W	1P2W	1P2W	1P2W	
Pattern 3	1P3W / 3	3P3W2M	1P2W	1P3W/3	3P3W2M	1P2W	
Pattern 4	1P3W / 3	3P3W2M	1P3W/3	3P3W2M	1P3W /	3P3W2M	
Pattern 5	3P3\	3P3W3M / 3V3A / 3P4W 1P2W 1P2W 1P2W					
Pattern 6	3P3\	3P3W3M / 3V3A / 3P4W 1P3W / 3P3W2M 1P2W					
Pattern 7	3P3\	3P3W3M / 3V3A / 3P4W 3P3W3M / 3V3A / 3P4W					
			ations, select 1 ations, select 3				
Number of	1	2	3	4	5	6	
channels Pattern 1		-		-		-	
Pattern 2	-	✓ ✓	· ·	✓ ✓	· ·	· ·	
Pattern 3		-	-	-	-	· ·	
Pattern 4	_	_	_	1			
Pattern 5	-	_	1	· ·	1	· ·	
Pattern 6	_	_	-	-		· ·	
Pattern 7	_	_		_	-	-	
1 attern 7	Connecti		at can be seled	ted based on t		•	
	[√] Can b	be selected, [-] Cannot be se	lected			
Number of input			n input unit pro	vides 1 chanr	nel for simulta	neous volta	
channels	and curre	ent input					
	Voltage		terminals (safet				
nput terminal profile			ed connector (M				
	Probe 2	,	etal) + power si	,			
Probe 2 power supp	+12 V ±0 channels		0.5 V, max. 60	0 mA, up to a	max. of 700 r	mA for up to	
			unit Dhatai	lated input	cictanoo	no divid	
nput method		measurement measurement		lated input, re input from curr			
/oltage range	6 V / 15 \	//30V/60V	/ 150 V / 300 V	/ 600 V / 1500	V		
	400 m 4	/800 m 4 / 2 4	/4 A / 8 A / 20	Α	(with 20 A sen	ISOT)	
		/ 20 A / 40 A			(with 200 A set		
Current range		/5 A / 10 A / 2			(with 50 A sen		
Probe 1)	10 A / 20	A / 50 A / 100	A / 200 A / 50		(with 500 A se		
	20 A / 40	0 A / 100 A / 20	00 A / 400 A / 1	kA	(with 1000 A s	ensor)	
	114 (0)				V//A =======)		
			kA / 20 kA / 50				
			1 kA / 2 kA / 5				
Probe 2)			A / 200 A / 500				
		/ 5 A / 10 A / 2			V/A sensor; with		
	100 mA /	100 mA / 200 mA / 500 mA / 1 A / 2 A / 5 A (with 1 V/A sensor; with CT6700 or CT670)					
					sensor; with C16	700 or CT67	
			.0 V / 2.0 V / 5.0	0 V range)			
Power range				0 V range)			
^o ower range	2.40000 3 (relative	W to 4.50000 e to voltage/cu	.0 V / 2.0 V / 5.0 MW (dependin urrent range rat	0 V range) g on voltage ar ing);	nd current cor		
Power range Crest factor	2.40000 3 (relative however,	W to 4.50000 e to voltage/cu , 1.33 for 1500	.0 V / 2.0 V / 5.0 MW (dependin	0 V range) g on voltage ai ing); ir 5 V Probe 2 i	nd current corr		
	2.40000 3 (relativ however, 300 (rela	W to 4.50000 e to voltage/cu , 1.33 for 1500 tive to minimu	.0 V / 2.0 V / 5.0 MW (dependin urrent range rat V range, 1.5 fo	0 V range) g on voltage au ing); or 5 V Probe 2 r and current in	nd current corr range iput);		
Crest factor	2.40000 3 (relativ, however, 300 (rela however, Voltage	W to 4.50000 e to voltage/cu 1.33 for 1500 tive to minimu 133 for 1500 inputs	.0 V / 2.0 V / 5.1 MW (dependin urrent range rat V range, 1.5 fo m valid voltage V range, 150 fo 4 MΩ ±40 kΩ	0 V range) g on voltage au ing); ir 5 V Probe 2 i and current in r 5 V Probe 2 i	nd current corr range iput); range	nbinations)	
Crest factor	2.40000 3 (relative however, 300 (relative however, Voltage Probe 1	W to 4.50000 e to voltage/cu 1.33 for 1500 tive to minimu 133 for 1500 inputs inputs	0 V / 2.0 V / 5.1 MW (dependin urrent range rat V range, 1.5 fc m valid voltage V range, 150 fc 4 MΩ ±40 kΩ 1 MΩ ±50 kΩ	0 V range) g on voltage ar ing); ir 5 V Probe 2 r and current in ir 5 V Probe 2 r Probe 2 in	nd current com range iput); range puts 1 M		
Crest factor	2.40000 3 (relativ, however, 300 (rela however, Voltage	W to 4.50000 e to voltage/ct 1.33 for 1500 tive to minimu 133 for 1500 inputs inputs 1	$\begin{array}{l} 0.0 \ V / 2.0 \ V / 5.1 \\ \mbox{MW} \ (dependin \\ \mbox{urrent range rat} \\ V \ range, 1.5 \ fc \\ \mbox{w valid voltage} \\ V \ range, 150 \ fc \\ \mbox{t} \ M\Omega \ \pm 40 \ k\Omega \\ \ 1 \ M\Omega \ \pm 50 \ k\Omega \\ \ 000 \ V, \ \pm 2000 \ V \end{array}$	0 V range) g on voltage au ing); r 5 V Probe 2 n and current in r 5 V Probe 2 in Probe 2 inp /peak (10 ms o	nd current com range iput); range puts 1 M or less)	nbinations) IΩ ±50 kΩ	
Crest factor nput resistance 50 Hz / 60 Hz)	2.40000 3 (relativi however, 300 (rela however, Voltage Probe 1 Voltage	W to 4.50000 e to voltage/cu 1.33 for 1500 tive to minimu 133 for 1500 inputs inputs inputs 1 l	$\begin{array}{l} 0.0 \ V \ / \ 2.0 \ V \ / \ 5.1 \\ \hline MW \ (dependin \\ urrent range rat \\ V \ range, 1.5 \ fc \\ m \ valid \ voltage \\ V \ range, 1.5 \ fc \\ 4 \ M\Omega \ \pm 40 \ k\Omega \\ 1 \ M\Omega \ \pm 50 \ k\Omega \\ \hline 000 \ V, \ \pm 2000 \ V \\ nput \ voltage \ freq \end{array}$	0 V range) g on voltage au ing); r 5 V Probe 2 r and current in r 5 V Probe 2 in Probe 2 in Probe 2 in /peak (10 ms c uency of 250 kH	nd current com range iput); range puts 1 M rr less) iz to 1 MHz, (125	nbinations) IΩ ±50 kΩ 50 - f) V	
Crest factor	2.40000 3 (relativi however, 300 (rela however, Voltage Probe 1 Voltage	W to 4.50000 e to voltage/ct 1.33 for 1500 tive to minimu 133 for 1500 inputs inputs inputs 1 inputs	$\begin{array}{l} 0.0 \ V / 2.0 \ V / 5.1 \\ \mbox{MW} \ (dependin \\ \mbox{urrent range rat} \\ V \ range, 1.5 \ fc \\ \mbox{would voltage} \\ V \ range, 150 \ fc \\ \mbox{t} \ M\Omega \ \pm 40 \ k\Omega \\ \ 1 \ M\Omega \ \pm 50 \ k\Omega \\ \ 000 \ V, \ \pm 2000 \ V \end{array}$	0 V range) g on voltage au ing); r 5 V Probe 2 r and current in r 5 V Probe 2 r Probe 2 inj /peak (10 ms c uency of 250 kH iquency of 1 M	nd current com range iput); range puts 1 M rr less) iz to 1 MHz, (125	nbinations) IΩ ±50 kΩ 50 - f) V	
Crest factor nput resistance 50 Hz / 60 Hz)	2.40000 3 (relativi however, 300 (rela however, Voltage Probe 1 Probe 1	W to 4.50000 e to voltage/ct 1.33 for 1500 tive to minimu 133 for 1500 inputs inputs inputs 1 li L uputs 5	0 V / 2.0 V / 5.1 MW (dependin urrent range rat V range, 1.5 fc m valid voltage 4 MΩ \pm 40 kΩ 1 MΩ \pm 50 kΩ 000 V, \pm 2000 V nput voltage freq nput voltage freq init for f above: V, \pm 12 Vpeak (0 V range) g on voltage au ing); ir 5 V Probe 2 in and current in r 5 V Probe 2 in Probe 2 in Vpeak (10 ms c uency of 250 kH iquency of 1 M kHz (10 ms or less)	nd current com range iput); range puts 1 M or less) iz to 1 MHz, (125 Hz to 5 MHz, 5	nbinations) IΩ ±50 kΩ 50 - f) V	
Crest factor nput resistance 50 Hz / 60 Hz)	2.40000 3 (relativi however, 300 (rela however, Voltage Probe 1 Voltage	W to 4.50000 e to voltage/ct 1.33 for 1500 tive to minimu 133 for 1500 inputs inputs inputs 1 li L uputs 5	$\begin{array}{l} 0.0 \ V \ / \ 2.0 \ V \ / \ 5.1 \\ \hline MW \ (dependin \\ urrent range rat \\ V \ range, \ 1.5 \ fc \\ t \ v \ range, \ 1.5 \ fc \\ t \ M\Omega \ \pm 40 \ k\Omega \\ t \ M\Omega \ \pm 30 \ k\Omega \\ \hline 000 \ V, \ \pm 2000 \ V \\ nput \ voltage \ frag \\ nput \ voltage \ frag \\ Jnit \ for \ f \ above: \end{array}$	0 V range) g on voltage au ing); ir 5 V Probe 2 in and current in r 5 V Probe 2 in Probe 2 in Vpeak (10 ms c uency of 250 kH iquency of 1 M kHz (10 ms or less)	nd current com range iput); range puts 1 M or less) iz to 1 MHz, (125 Hz to 5 MHz, 5	nbinations) IΩ ±50 kΩ 50 - f) V	
Crest factor nput resistance 50 Hz / 60 Hz)	2.40000 3 (relative however, 300 (relative however, 300 (relative) Voltage Probe 1 Voltage Probe 1 Probe 1 Probe 2 Probe 1 Probe 1 Probe 2 Probe 1 Probe 1 Probe 2 Probe 1 Pro	W to 4.50000 e to voltage/ct 1.33 for 1500 tive to minimu 133 for 1500 inputs inputs inputs inputs inputs 8 nput terminal	0 V / 2.0 V / 5.1 MW (dependin arrent range rat V range, 1.5 fo walid voltage V range, 150 fo 4 MΩ ±40 kΩ 1 MΩ ±50 kΩ 000 V, ±2000 V, ±2000 V 0000 V, ±2000 V, ±2000 V 0000 V, ±2000 V V, ±12 Vpeak (V, ±15 Vpeak ((50 Hz/60 Hz)	0 V range) g on voltage au ing); r 5 V Probe 2 i r 5 V Probe 2 in Probe 2 in /peak (10 ms or vency of 250 kH vequency of 250 kH kHz (10 ms or less)	nd current corr range iput); range puts 1 M or less) iz to 1 MHz, (122 Hz to 5 MHz, 5	nbinations) IΩ ±50 kΩ 50 - f) V	
Crest factor nput resistance 50 Hz / 60 Hz) Maximum input volta	2.40000 3 (relative however, 300 (relative however, 300 (relative Probe 1 Voltage Probe 1 Voltage Probe 1 Probe 2 Probe 2 age Voltage i CATIII 6C	W to 4.50000 e to voltage/ct 1.33 for 1500 tive to minimu 133 for 1500 inputs inputs inputs inputs inputs inputs inputs finput	$\begin{array}{l} 0.0 \ V / 2.0 \ V / 5.0 \\ W \ (dependin \\ urrent range rat \\ V range, 1.5 fc \\ wall voltage \\ V range, 150 tc \\ 4.00 \ V, ange, 150 tc \\ 4.00 \ V, ange, 150 tc \\ 4.00 \ V, ange, 150 tc \\ 0.00 \ V, \pm 200 \ V \\ 0.00 \ V \ V \\ 0.00 \ V \ V \\ 0.00 \ V \ V \ V \ V \ V \ V \ V \ V \ V \$	0 V range) g on voltage au ing); r 5 V Probe 2 i Probe 2 inj Probe 2 inj /peak (10 ms o uency of 250 kH kHz 10 ms or less) (10 ms or less)	nd current com range iput); range puts 1 M or less) z to 1 MHz, (125 Hz to 5 MHz, 5	nbinations) IΩ ±50 kΩ 50 - f) V	
Crest factor nput resistance 50 Hz / 60 Hz) Vlaximum input volta Vlaximum rated volta o earth	2.40000 3 (relativity however, 300 (rela however, 300 (rela however, Voltage Probe 1 Voltage Probe 1 Probe 2 age Voltage i CATIII 60 CATIII 60 CATIII 60 CATII 10 Voltage	W to 4.50000 e to voltage/ct 1.33 for 1500 tive to minimu 133 for 1500 inputs inputs inputs inputs inputs 1 inputs 5 inputs 5 00V; anticipate 00V; anticipate	$\begin{array}{c} 0.0 \ V / 2.0 \ V / 5.0 \\ W \ (dependin \\ wrent range rat \\ V range, 1.5 fc \\ wange, 1.5 fc \\ vrange, 1.5 fc \\ vrange, 1.5 fc \\ wange, 150 fc \\ wange, $	0 V range) g on voltage au ing); r 5 V Probe 2 i Probe 2 ing Probe 2 ing Vpeak (10 ms o uency of 250 kH kHz (10 ms or less) (10 ms or less) rvoltage: 6000 prvoltage: 6000	nd current corr range iput); range 1 M or less) z to 1 MHz, (125 Hz to 5 MHz, 5 W 20V	nbinations) IΩ ±50 kΩ 50 - f) V 50 V	
Crest factor nput resistance 50 Hz / 60 Hz) Maximum input volta Maximum rated volta o earth	2.40000 3 (relativity however, 300 (rela however, 300 (rela however, Voltage Probe 1 Voltage Probe 1 Probe 2 age Voltage i CATIII 60 CATIII 60 CATIII 60 CATII 10 Voltage	W to 4.50000 e to voltage/ct 1.33 for 1500 inputs inputs inputs inputs inputs nput terminal J0V; anticipate current simul	$\begin{array}{l} 0.0 \ V \ / 2.0 \ V \ / 5.0 \\ \hline \\ MW \ (dependin \\ urrent range rat \\ V range, 1.5 fc \\ urange, 1.5 0 fc \\ 4 \ M\Omega \ \pm 40 \ k\Omega \\ 1 \ M\Omega \ \pm 50 \ k\Omega \\ \hline \\ 000 \ V, \ \pm 2000 \ V \\ nput voltage free \\ Jnit for 1 \ above: \\ V, \ \pm 12 \ Vpeak \ (\\ SV, \ \pm 12 \ Vpeak \ (\\ (50 \ Hz/60 \ Hz) \\ \hline \end{array}$	0 V range) g on voltage au ing); r 5 V Probe 2 i Probe 2 ing Probe 2 ing Vpeak (10 ms o uency of 250 kH kHz (10 ms or less) (10 ms or less) rvoltage: 6000 prvoltage: 6000	nd current corr range iput); range 1 M or less) z to 1 MHz, (125 Hz to 5 MHz, 5 W 20V	nbinations) IΩ ±50 kΩ 50 - f) V 50 V	
Crest factor nput resistance 50 Hz / 60 Hz) Maximum input volta Maximum rated volta o earth Measurement metho	2.40000 3 (relativity however, 300 (relativity	W to 4.50000 e to voltage/ct 1.33 for 1500 inputs inputs inputs inputs inputs inputs inputs input terminal JOV; anticipate coV; anticipate cov	$\begin{array}{c} 0.0 \ V / 2.0 \ V / 5.0 \\ W \ (dependin \\ wrent range rat \\ V range, 1.5 fc \\ wange, 1.5 fc \\ vrange, 1.5 fc \\ vrange, 1.5 fc \\ wange, 150 fc \\ wange, $	0 V range) g on voltage au ing); r 5 V Probe 2 i Probe 2 ing Probe 2 ing Vpeak (10 ms o uency of 250 kH kHz (10 ms or less) (10 ms or less) rvoltage: 6000 prvoltage: 6000	nd current corr range iput); range 1 M or less) z to 1 MHz, (125 Hz to 5 MHz, 5 W 20V	nbinations) IΩ ±50 kΩ 50 - f) V 50 V	
Crest factor nput resistance 50 Hz / 60 Hz) Maximum input volta Maximum rated volta o earth Measurement metho Sampling	2.40000 3 (relativity however, 300 (relativity	W to 4.50000 e to voltage/ct 1.33 for 1500 inputs inputs inputs inputs inputs nput terminal JOV; anticipate goV; anticipate current simulon 18 bits	$\begin{array}{c} 0.0 \ V / 2.0 \ V / 5.0 \\ W \ (dependin \\ wrent range rat \\ V range, 1.5 fc \\ wange, 1.5 fc \\ vrange, 1.5 fc \\ vrange, 1.5 fc \\ wange, 150 fc \\ wange, $	0 V range) g on voltage au ing); r 5 V Probe 2 i Probe 2 ing Probe 2 ing Vpeak (10 ms o uency of 250 kH kHz (10 ms or less) (10 ms or less) rvoltage: 6000 prvoltage: 6000	nd current corr range iput); range 1 M or less) z to 1 MHz, (125 Hz to 5 MHz, 5 W 20V	nbinations) IΩ ±50 kΩ 50 - f) V 50 V	
Crest factor nput resistance 50 Hz / 60 Hz) Maximum input volta Maximum rated volta o earth Measurement metho Sampling Frequency band	2.40000 3 (relative however, 300 (rela however, Probe 1 Voltage Probe 1 Voltage Probe 2 Probe 2 CATIL Io0 CATIL Io0 Voltage/ calculatio 5 MHz / 1 DC, 0.1 H	W to 4.50000 e to voltage/ct 1.33 for 1500 inputs inputs inputs inputs 1 inputs 1 inputs 1 inputs 5 inputs 5 inputs 5 inputs 5 inputs 1 U U U U U U U U U U U U U U U U U U	$\begin{array}{c} 0.0 \ V / 2.0 \ V / 5.0 \\ W \ (dependin \\ wrent range rat \\ V range, 1.5 fc \\ wange, 1.5 fc \\ vrange, 1.5 fc \\ vrange, 1.5 fc \\ wange, 150 fc \\ wange, $	0 V range) g on voltage au ing); r 5 V Probe 2 i Probe 2 ing Probe 2 ing Vpeak (10 ms o uency of 250 kH kHz (10 ms or less) (10 ms or less) rvoltage: 6000 prvoltage: 6000	nd current corr range iput); range 1 M or less) z to 1 MHz, (125 Hz to 5 MHz, 5 W 20V	nbinations) IΩ ±50 kΩ 50 - f) V 50 V	
Crest factor nput resistance 50 Hz / 60 Hz) Vaximum input volta Vaximum rated volta o earth Weasurement methor Sampling Frequency band Synchronization	2.40000 3 (relativity however, 300 (relativity	W to 4.50000 e to voltage/ct 1.33 for 1500 inputs inputs inputs inputs 1 inputs 1 inputs 1 inputs 5 inputs 5 inputs 5 inputs 5 inputs 1 U U U U U U U U U U U U U U U U U U	$\begin{array}{c} 0.0 \ V / 2.0 \ V / 5.0 \\ W \ (dependin \\ wrent range rat \\ V range, 1.5 fc \\ wange, 1.5 fc \\ vrange, 1.5 fc \\ vrange, 1.5 fc \\ wange, 150 fc \\ wange, $	0 V range) g on voltage au ing); r 5 V Probe 2 i Probe 2 ing Probe 2 ing Vpeak (10 ms o uency of 250 kH kHz (10 ms or less) (10 ms or less) rvoltage: 6000 prvoltage: 6000	nd current corr range iput); range 1 M or less) z to 1 MHz, (125 Hz to 5 MHz, 5 W 20V	nbinations) IΩ ±50 kΩ 50 - f) V 50 V	
Crest factor nput resistance 50 Hz / 60 Hz) Vaximum input volta Vaximum rated volta o earth Weasurement methor Sampling Frequency band Synchronization	2.40000 3 (relativi, however, 300 (rela however, Probe 1 Voltage Probe 1 Voltage Probe 2 age Voltage i CATII 60 CATII 60 CATII 10 calculati 5 MHz / 1 DC, 0.1 Hz to	W to 4.50000 e to voltage/ct. 1.33 for 1500 inputs inputs inputs inputs inputs nput terminal 00V; anticipate 00V; anticipate 00V; anticipate 2 MHz 2 MHz	0 V / 2.0 V / 5.1 MW (dependin model of the second second second second model of the second second second second second second the second	0 V range) g on voltage au ing); r 5 V Probe 2 i Probe 2 inp /peak (10 ms c uency of 250 kH iquency of 1 M kHz (10 ms or less) 10 ms or less) rvoltage: 6000 ervoltage: 6000	nd current corr range iput); range 1 M or less) z to 1 MHz, (125 Hz to 5 MHz, 5 W 20V	nbinations) IΩ ±50 kΩ 50 - f) V 50 V	
Crest factor nput resistance 50 Hz / 60 Hz) Maximum input volta Maximum rated volta o earth Measurement methor Sampling Frequency band Synchronization requency range	2.40000 3 (relativithowever, 300 (relativithowever, 300 (relativithowever, 300 (relativithowever, 9 robe 1 Voltage Probe 1 Probe 2 age Voltage i CATIII 60 CATIII 60 CATIII 10 CATIII 10 DC, 0.1 H DC, 0.1 Hz to Ext1 to E Ext1 to E	W to 4.50000 e to voltage/ct. 1.33 for 1500 inputs inputs inputs inputs inputs finputs finputs finputs finputs finputs finput terminal 10V; anticipate 00V; anticipate 00V; anticipate 12 to 2 MHz 2 MHz , 11 to 16, DC (ixt2	0 V / 2.0 V / 5.1 MW (dependin arrent range rat V range, 1.5 fo 4 MΩ ±40 kΩ 1 MΩ ±50 kΩ 000 V, ±2000 V 000 V, ±2000 V, ±2000 V 000 V, ±2000 V, ±2000 V V, ±12 Vpeak ((50 Hz/60 Hz) d transient ove ad transient ove ad transient ove fixed at data up	0 V range) g on voltage au ing); r 5 V Probe 2 i Probe 2 inp /peak (10 ms or uency of 250 kH vaquency of 1 M kHz (10 ms or less) (10 ms or less) rvoltage: 60000 prvoltage: 60000 I sampling with	nd current corr range iput); range puts 1 M or less) iz to 1 MHz, (122 Hz to 5 MHz, 5 Hz to 5 MHz, 5 DV ov	1Ω ±50 kΩ 50 - 1) V 50 V	
Crest factor nput resistance 50 Hz / 60 Hz) Maximum input volta Maximum rated volta o earth Measurement methor Sampling Frequency band Synchronization requency range	2.40000 3 (relativ, however, 300 (rela however, Probe 1 Voltage Probe 1 Probe 2 age Voltage i CATII 60 CATII 100 CATII 100 calculati 5 MHz / 1 DC, 0.1 H 0.1 Hz to The zero	W to 4.50000 e to voltage/ct. 1.33 for 1500 tive to minimu 133 for 1500 inputs inputs inputs inputs inputs inputs inputs to 2 MHz 2 MHz 2 MHz 2 MHz 2 MHz -cross point c	0 V / 2.0 V / 5.1 MW (dependin urrent range rat V range, 1.5 fo 4 MΩ ±40 kΩ 1 MΩ ±50 kΩ 000 V, ±2000 V put voltage freq nput voltage freq nput voltage freq 1 KΩ ±50 kΩ (V, ±12 Vpeak (V, ±15 Vpeak (50 H2/60 H2) (50 H2/60 H2) taneous digitation fixed at data up fixed at data up	0 V range) g on voltage au ing); r 5 V Probe 2 r Probe 2 inj Probe 2 inj Vpeak (10 ms or uency of 250 kH quency of 250 kH quency of 250 kH quency of 1 M kHz (10 ms or less) (10 ms or less) rvoltage: 6000 ervoltage: 6000 rvoltage: 6000 arvoltage: 6000 rvoltage: 6000 arvoltage: 6000 rvoltage: 60000 rvoltage: 6000 rvoltage: 6000 rvoltage: 6000 rvoltage	nd current corr range iput); range puts 1 M or less) iz to 1 MHz, (122 Hz to 5 MHz, 5 Hz to 5 MHz, 5 DV ov	1Ω ±50 kΩ 50 - 1) V 50 V	
Crest factor nput resistance 50 Hz / 60 Hz) Maximum input volt	2.40000 3 (relativi, however, 300 (rela however, 300 (rela however, Voltage Probe 1 Probe 1 Probe 2 age Voltage i CATIII 60 CATII 10 Od Voltage/, calculati 5 MHz / 1 DC, 0.1 H 0.1 Hz to furce U1 to U6 The zero is used a	W to 4.50000 e to voltage/ct 1.33 for 1500 inputs input inputs in	0 V / 2.0 V / 5.1 MW (dependin urrent range rat V range, 1.5 fo 4 MΩ ±40 kΩ 1 MΩ ±50 kΩ 000 V, ±2000 V put voltage freq nput voltage freq nput voltage freq 1 MΩ ±50 kΩ (V, ±12 Vpeak (V, ±15 Vpeak ((V, ±15 Vpeak (50 H2/60 H2)) d transient ove d transient over taneous digitations fixed at data up f the waveform f or U or I sele	0 V range) g on voltage au ing); r 5 V Probe 2 r Probe 2 inj Probe 2 inj Vpeak (10 ms or uency of 250 kH quency of 250 kH quency of 250 kH quency of 1 M kHz (10 ms or less) (10 ms or less) rvoltage: 6000 ervoltage: 6000 rvoltage: 6000 arvoltage: 6000 rvoltage: 6000 arvoltage: 6000 rvoltage: 60000 rvoltage: 6000 rvoltage: 6000 rvoltage: 6000 rvoltage	nd current corr range iput); range puts 1 M or less) iz to 1 MHz, (122 Hz to 5 MHz, 5 Hz to 5 MHz, 5 DV ov	1Ω ±50 kΩ 50 -1) V 50 V	
Crest factor nput resistance 50 Hz / 60 Hz) Maximum input volta Maximum rated volta o earth Vleasurement metho Sampling Frequency band Synchronization requency range Synchronization sou	2.40000 3 (relativity however, 300 (relative	W to 4.50000 e to voltage/ct 1.33 for 1500 inputs inputs inputs inputs 1 inputs inputs 1 inputs 1 inputs 1 inputs 1 input terminal 00V; anticipate 00V; anticipate 00V; anticipate 2 MHz 2 MHz 2 MHz -cross point c is the standard 0 ms / 200 ms	0 V / 2.0 V / 5.1 MW (dependin arrent range rat V range, 1.5 fo 4 MΩ ±40 kΩ 1 MΩ ±50 kΩ 000 V, ±200 V 000 V, ±200 V (50 Hz/60 Hz) d transient ove d transient ove d transient ove d transient ove fixed at data up f the waveform f or U o I sele	0 V range) g on voltage au ing); r 5 V Probe 2 r Probe 2 ing /peak (10 ms or uency of 250 kH uquency of 1 M kHz (10 ms or less) (10 ms	nd current corr range iput); range puts 1 M or less) iz to 1 MHz, (122 Hz to 5 MHz, 15 W ov th zero-cross th zero-cross	nbinations) Ω ±50 kΩ 50 - f) V 50 V synchroniz ero-cross fil	
Crest factor nput resistance 50 Hz / 60 Hz) Maximum input volta Maximum rated volta o earth Vleasurement metho Sampling Frequency band Synchronization requency range Synchronization sou	2.40000 3 (relativi, however, 300 (relativi, however, 200 (relativi, however,	W to 4.50000 e to voltage/ct 1.33 for 1500 inputs inputs inputs inputs 1 inputs inputs 1 inputs 1 inputs 1 inputs 1 input terminal 00V; anticipate 00V; anticipate 00V; anticipate 2 MHz 2 MHz 2 MHz -cross point c is the standard 0 ms / 200 ms	0 V / 2.0 V / 5.1 MW (dependin urrent range rat V range, 1.5 fo walid voltage V range, 150 fo 4 MΩ ±40 kΩ 1 MΩ ±50 kΩ 000 V, ±2000 V put voltage freq nput voltage freq nput voltage freq Nuit for 1 above: V, ±12 Vpeak (V, ±15 Vpeak ((50 H2/60 H2) (50 H2/60 H2) taneous digitation fixed at data up f the waveform 1 for the waveform 1 for the waveform 1 for the data for the data 0 for the data for the data for the data 0 for the data for the data for the data for the data for the data 0 for the data for the da	0 V range) g on voltage au ing); r 5 V Probe 2 r Probe 2 ing /peak (10 ms or uency of 250 kH uquency of 1 M kHz (10 ms or less) (10 ms	nd current corr range iput); range puts 1 M or less) iz to 1 MHz, (122 Hz to 5 MHz, 15 W ov th zero-cross th zero-cross	nbinations) Ω ±50 kΩ 50 - f) V 50 V synchroniz ero-cross fil	
Crest factor nput resistance 50 Hz / 60 Hz) Maximum input volta Maximum rated volta o earth Vleasurement metho Sampling Frequency band Synchronization requency range Synchronization sou	2.40000 3 (relativity however, 300 (relativity	W to 4.50000 e to voltage/ct 1.33 for 1500 inputs inputs inputs inputs 1 inputs inputs inputs input terminal 00V; anticipate 00V; anticipate 00V; anticipate 2 MHz 2 MHz 2 MHz 1 to 16, DC (xt2 -cross point ct s the standard ing simple av ing simple av ing simple av ing simple av 1 kHz / 5 kHz	0 V / 2.0 V / 5.1 MW (dependin model of the second seco	0 V range) g on voltage au ing); r 5 V Probe 2 r Probe 2 inj /peak (10 ms or uency of 250 kH quency of 250 kH quency of 250 kH quency of 250 kH quency of 1 M kHz (10 ms or less) (10 ms or less) (10 ms or less) rvoltage: 6000 rrvoltage: 6000 rrvoltage: 6000 ravoltage: 60	nd current corr range iput); range puts 1 M or less) iz to 1 MHz, (12t Hz to 5 MHz, 12 W DV DV th zero-cross through the zero- varies based of 500 kHz / OFF	nbinations) IΩ ±50 kΩ 50 - f) V 50 V synchroniz ero-cross fil	
Crest factor nput resistance 50 Hz / 60 Hz) Maximum input volta Maximum rated volta o earth Measurement metho Sampling Frequency band Synchronization requency range Synchronization sou Data update rate	2.40000 3 (relativn however, 300 (rela however, 200 (rela however, 200 (rela however, 200 (rela Probe 1 Probe 1 Probe 1 Probe 2 200 (CATII 60 CATII 60 CATII 60 CATII 60 CATII 60 CATII 60 CATII 10 DC, 0.1 H DC, 0.1 H DC, 0.1 H DC, 0.1 H U to U66 Ext1 to E The zero is used a 10 ms / 5 When us of averag	W to 4.50000 e to voltage/ct. 1.33 for 1500 inputs inputs inputs inputs inputs inputs finputs finputs finputs finputs finputs finput terminal 10V; anticipate 00V; anticipate 00V; anticipate 00V; anticipate 18 bits Hz to 2 MHz 2 MHz f. 11 to 16, DC (ixt2 -cross point cr is the standard for ms / 200 ms ing simple avging iterations. 1 kHz / 5 kHz	0 V / 2.0 V / 5.1 MW (dependin Irrent range rat V range, 1.5 fo W range, 1.5 fo 4 MΩ ±40 kΩ 1 MΩ ±50 kΩ 000 V, ±2000 V put voltage freq nput voltage freq nput voltage freq Nuit for 1 above: V, ±12 Vpeak (V, ±15 Vpeak ((50 H2/60 H2) (50 H2/60 H2) fixed at data up fixed at data up f the waveform d for U or I sele a arraging, the da (10 kHz / 50 kH LPF + digital IIF	0 V range) g on voltage au ing); r 5 V Probe 2 r Probe 2 inj Probe 2 inj //peak (10 ms or uency of 250 kH quency of 1 M kHz 10 ms or less) 10 ms or less) 10 ms or less) 10 ms or less) 11 ms or less) 12 ms or less) 13 ms or less) 14 ms or less) 14 ms or less) 15 ms or less) 16 ms or less) 17 ms or less) 18 ms or less) 19 ms or less) 10 ms or less or	nd current corr range iput); range puts 1 M or less) iz to 1 MHz, (12t Hz to 5 MHz, 12 W DV DV th zero-cross through the zero- varies based of 500 kHz / OFF	nbinations) IΩ ±50 kΩ 50 - f) V 50 V synchroniz ero-cross fil	
Crest factor nput resistance 50 Hz / 60 Hz) Maximum input volta Maximum rated volta o earth Measurement metho Sampling Frequency band Synchronization requency range Synchronization sou Data update rate	2.40000 3 (relativity however, 300 (relativity	W to 4.50000 e to voltage/ct 1.33 for 1500 inputs inputs inputs inputs inputs inputs inputs input terminal 00V; anticipate current simulon 8 bits 12 to 2 MHz 2 MHz 2 MHz 11 to 16, DC (ixt2 0 ms / 20 MHz ing simple av ing ing iterations. 1 kHz / 5 kHz 00 kHz analog	0 V / 2.0 V / 5.1 MW (dependin model of the second seco	0 V range) g on voltage au ing); r 5 V Probe 2 in Probe 2 in Probe 2 in Vpeak (10 ms or less) (10 ms or less) (10 ms or less)	nd current com range iput); range 1 M or less) 2 to 1 MHz, (122 Hz to 5 MHz, (22 Hz to 5 MHz, 5 00 W 00 th zero-cross through the zero varies based of 500 kHz / OFF orth characteris	nbinations) IΩ ±50 kΩ 50 - f) V 50 V synchroniz ero-cross fil on the numl tics equivale	
Crest factor Input resistance 50 Hz / 60 Hz) Maximum input volta Maximum rated volta o earth Measurement metho Sampling Frequency band Synchronization requency range Data update rate _PF	2.40000 3 (relativ, however, 300 (rela however, Probe 1 Voltage Probe 1 Voltage Probe 1 Probe 2 age Voltage i CATII 50 CATII 60 CATII 10 DC, 0.1 H DC, 0.1 H DC, 0.1 H DC, 0.1 Hz to I I to U66 Ext1 to E The zero is used a 10 ms / 5 When us of averag S00 Hz / 1 Approx.5 Except w Defined 1	W to 4.50000 e to voltage/ct. 1.33 for 1500 inputs inputs inputs inputs inputs inputs inputs inputs input terminal 00V; anticipate 00V; anticipate 00V; anticipate 2 MHz 2 MHz 2 MHz -cross point of is the standard 00 ms / 200 ms ing simple aviging iterations. 1 kHz / 5 kHz to requencies	0 V / 2.0 V / 5.1 MW (dependin urrent range rat V range, 1.5 fo walid voltage V range, 150 fo 4 MΩ ±40 kΩ 1 MΩ ±50 kΩ 000 V, ±2000 V put voltage freq nput voltage freq nput voltage freq Nuit for 1 above: V, ±12 Vpeak (V, ±12 Vpeak (V, ±15 Vpeak ((50 H2/60 H2) (50 H2/60 H2) fitaneous digitation fitaneous di fitaneous digitation fitaneous digitation fitaneous digitation	0 V range) g on voltage au ing); r 5 V Probe 2 ri Probe 2 inj Probe 2 inj Vpeak (10 ms or uency of 250 kH ryuency of 250 kH ryuency of 250 kH ryuency of 1 M kHz (10 ms or less) (10 ms or less) (10 ms or less) rvoltage: 6000 ervoltage: 6000 rvoltage: 6000 I sampling with date rate), after passing ction. ta update rate 4z / 100 kHz / 5 filter (Butterwo e accuracy. han or equal to	nd current com range iput); range 1 M or less) 2 to 1 MHz, (122 Hz to 5 MHz, (22 Hz to 5 MHz, 5 00 W 00 th zero-cross through the zero varies based of 500 kHz / OFF orth characteris	nbinations) IΩ ±50 kΩ 50 - f) V 50 V synchroniz ero-cross fil on the numt tics equivale	
Crest factor Trest factor nput resistance 50 Hz / 60 Hz) Maximum input volte Maximum rated volte o earth Measurement metho Sampling Frequency band Synchronization Frequency range Synchronization sou Data update rate _PF Polarity detection	2.40000 3 (relativ, however, 300 (rela however, Probe 1 Voltage Probe 1 Voltage Probe 1 Probe 2 age Voltage i CATII 50 CATII 60 CATII 10 DC, 0.1 H DC, 0.1 H DC, 0.1 H DC, 0.1 Hz to I I to U66 Ext1 to E The zero is used a 10 ms / 5 When us of averag S00 Hz / 1 Approx.5 Except w Defined 1	W to 4.50000 e to voltage/ct. 1.33 for 1500 inputs inputs inputs inputs inputs inputs inputs inputs input terminal 00V; anticipate 00V; anticipate 00V; anticipate 2 MHz 2 MHz 2 MHz -cross point of is the standard 00 ms / 200 ms ing simple aviging iterations. 1 kHz / 5 kHz to requencies	0 V / 2.0 V / 5.1 MW (dependin urrent range rat V range, 1.5 fo 4 MΩ ±40 kΩ 1 MΩ ±50 kΩ 000 V, ±2000 V 000 V, ±2000 V V, ±12 Vpeak (V, ±15 Vpeak (000 V, ±10 Vpeak (V, ±15 Vpeak (000 V, ±10 Vpeak (000 Vpeak	0 V range) g on voltage au ing); r 5 V Probe 2 ri Probe 2 inj Probe 2 inj Vpeak (10 ms or uency of 250 kH ryuency of 250 kH ryuency of 250 kH ryuency of 1 M kHz (10 ms or less) (10 ms or less) (10 ms or less) rvoltage: 6000 ervoltage: 6000 rvoltage: 6000 I sampling with date rate), after passing ction. ta update rate 4z / 100 kHz / 5 filter (Butterwo e accuracy. han or equal to	nd current com range iput); range 1 M or less) 2 to 1 MHz, (122 Hz to 5 MHz, (22 Hz to 5 MHz, 5 00 W 00 th zero-cross through the zero varies based of 500 kHz / OFF orth characteris	nbinations) IΩ ±50 kΩ 50 - f) V 50 V synchroniz ero-cross fil on the numt tics equivale	
Crest factor nput resistance 50 Hz / 60 Hz) Maximum input volta Maximum rated volta o earth Measurement metho Sampling Frequency band Synchronization requency range Synchronization sou Data update rate	2.40000 3 (relativity however, 300 (relativity	W to 4.50000 e to voltage/ct. 1.33 for 1500 inputs inputs inputs inputs inputs 1 inputs inputs 1 input	0 V / 2.0 V / 5.1 MW (dependin model of the second second second second model of the second seco	0 V range) g on voltage au ing); r 5 V Probe 2 in Probe 2 in Probe 2 in Probe 2 in (10 ms or less) (10 ms or less) rvoltage: 6000 I sampling with date rate), a after passing ction. ta update rate 12 / 100 kHz / 5 R filter (Butterwo e accuracy. han or equal to a	nd current corr range puts 1 M pr less) Iz to 1 MHz, (122 Hz to 5 MHz, 15 W ov th zero-cross through the zero- varies based of 500 kHz / OFF prth characteris	nbinations) IΩ ±50 kΩ 50 - f) V 50 V synchroniz ero-cross fil on the numt tics equivale at frequency	
Crest factor Trest factor nput resistance 50 Hz / 60 Hz) Maximum input volte Maximum rated volte o earth Measurement metho Sampling Frequency band Synchronization Frequency range Synchronization sou Data update rate _PF Polarity detection	2.40000 3 (relativi, however, 300 (rela however, 300 (rela however, Voltage Probe 1 Probe 1 Probe 2 age Voltage i CATIII 60 CATII 10 CATII 10 CATII 10 DC, 0.1 H 0.1 Hz to 0.1 Hz to 10 ms / 5 When us of averag 500 Hz / Approx.5 Except w Defined 1	W to 4.50000 e to voltage/ct 1.33 for 1500 inputs inputs inputs inputs nput terminal 00V; anticipate 00V; anticipate 00V; anticipate 2 MHz 2 MHz 2 MHz 11 to 16, DC (ixt2 - cross point c is the standard ing simple av for frequencies tero-cross tim (U), current (I) er factor (X), 5	0 V / 2.0 V / 5.1 MW (dependin irrent range rat V range, 1.5 fo 4 MΩ ±40 kΩ 1 MΩ ±50 kΩ 1 MΩ ±50 kΩ 1 MΩ ±50 kΩ 000 V, ±2000 V 000 V, ±2000 V (50 Hz/60 Hz) d transient ove taneous digita fixed at data up f the waveform 1 for U or I sele arraging, the da constraint over 1 okHz / 50 kH LPF + digital IIF 0.1% rdg, to the is that are less t ing comparisor), active powe	0 V range) g on voltage au ing); r 5 V Probe 2 in Probe 2 in Probe 2 in Probe 2 in (10 ms or less) (10 ms or less) rvoltage: 6000 rvoltage: 7000 rvoltage: 7000 rvoltage: 7000 rvoltage: 7000 rvoltage: 70	nd current corr range puts 1 M or less) z to 1 MHz, (122 Hz to 5 MHz, (22 Hz to 5 MHz, 5 00 th zero-cross through the zero- varies based of 500 kHz / OFF orth characteris to 1/10 of the ser	IΩ ±50 kΩ 50 - f) V 50 V synchroniz ero-cross fil on the numl tics equivale tit frequency eactive pow), loss (Los	
Crest factor Input resistance 50 Hz / 60 Hz) Maximum input volta Maximum rated volta o earth Measurement metho Sampling Frequency band Synchronization sou Data update rate _PF Polarity detection voltage	2.40000 3 (relative, however, 300 (relative, however, 300 (relative, however, Probe 1 Voltage Probe 1 Probe 2 age Voltage i CATII 50 CATII	W to 4.50000 e to voltage/ct. 1.33 for 1500 inputs inputs inputs inputs nput terminal 10V; anticipate 00V; anticipate 00V; anticipate 00V; anticipate 00V; anticipate 18 bits 12 to 2 MHz 2 MHz 2 MHz -cross point of is the standard is the s	0 V / 2.0 V / 5.1 MW (dependin urrent range rat V range, 1.5 fo walid voltage V range, 150 fo 4 MΩ ±40 kΩ 1 MΩ ±50 kΩ 000 V, ±2000 V put voltage freq nput voltage freq nput voltage freq nput voltage freq is V, ±12 Vpeak (V, ±12 Vpeak (V, ±15 Vpeak ((S0 H2/60 H2) (S0 H2/60 H2) f the waveform f for U or I seles arraging, the da (LPF + digital III 0.0 % rdg, to the ta that are less t ing comparisor), active powe bhase angle (b Urf), current r	0 V range) g on voltage au ing); r 5 V Probe 2 in Probe 2 in Probe 2 in Probe 2 in (10 ms or less) (10 ms or less) (nd current com range iput); range puts 1 M or less) z to 1 MHz, (125 Hz to 5 MHz, (25 Hz to 5 MHz, 5 hz to 1 MHz, 6 hz to 1 MHz, 1 MHz, 1 hz to 1 MHz, 1 hz	IΩ ±50 kΩ 50 - f) V 50 V synchroniz ero-cross fil on the numl tics equivale tit frequency eactive pow), loss (Los	
Crest factor Trest factor Tr	2.40000 3 (relative however, 300 (rela however, 300 (rela however, Probe 1 Voltage Probe 1 Probe 2 age Voltage i CATII 50 CATII 5	W to 4.50000 e to voltage/ct. 1.33 for 1500 inputs inputs inputs inputs nput terminal 10V; anticipate 00V; anticipate 00V; anticipate 00V; anticipate 00V; anticipate 18 bits 12 to 2 MHz 2 MHz 2 MHz -cross point of is the standard is the s	0 V / 2.0 V / 5.1 MW (dependin irrent range rat V range, 1.5 fo 4 MΩ ±40 kΩ 1 MΩ ±50 kΩ 1 MΩ ±50 kΩ 1 MΩ ±50 kΩ 000 V, ±2000 V 000 V, ±2000 V (50 Hz/60 Hz) d transient ove taneous digita fixed at data up f the waveform 1 for U or I sele arraging, the da constraint over 1 okHz / 50 kH LPF + digital IIF 0.1% rdg, to the is that are less t ing comparisor), active powe	0 V range) g on voltage au ing); r 5 V Probe 2 in Probe 2 in Probe 2 in Probe 2 in (10 ms or less) (10 ms or less) (nd current com range iput); range puts 1 M or less) z to 1 MHz, (125 Hz to 5 MHz, (25 Hz to 5 MHz, 5 hz to 1 MHz, 6 hz to 1 MHz, 1 MHz, 1 hz to 1 MHz, 1 hz	IΩ ±50 kΩ 50 - f) V 50 V synchroniz ero-cross fil on the numl tics equivale tit frequency eactive pow), loss (Los	
Crest factor Input resistance 50 Hz / 60 Hz) Maximum input volta Maximum rated volta o earth Measurement metho Sampling Frequency band Synchronization requency range Synchronization sou Data update rate LPF Polarity detection voltage Effective measurement	2.40000 3 (relativity however, 300 (relativity	W to 4.50000 e to voltage/ct. 1.33 for 1500 inputs inputs inputs inputs inputs nput terminal 00V; anticipate 00V; anticipate 00V; anticipate 00V; anticipate 2 MHz 11 to 16, DC (1xt2 -cross point c is the standars 00 kHz analog ing iterations, 11 kHz / 5 kHz 00 kHz analog then off, add = 1 kHz / 5 kHz ing simple avc ing refractor (A), pripple factor tegration (WP)	0 V / 2.0 V / 5.1 MW (dependin urrent range rat V range, 1.5 fo walid voltage V range, 150 fo 4 MΩ ±40 kΩ 1 MΩ ±50 kΩ 000 V, ±2000 V put voltage freq nput voltage freq nput voltage freq nput voltage freq is V, ±12 Vpeak (V, ±12 Vpeak (V, ±15 Vpeak ((S0 H2/60 H2) (S0 H2/60 H2) f the waveform f for U or I seles arraging, the da (LPF + digital III 0.0 % rdg, to the ta that are less t ing comparisor), active powe bhase angle (b Urf), current r	0 V range) g on voltage au ing); r 5 V Probe 2 ir Probe 2 ing /peak (10 ms or uency of 250 kH quency of 250 kH quency of 250 kH quency of 250 kH quency of 250 kH rvoltage: 6000 rvoltage: 6000 rvoltage: 6000 rvoltage: 6000 rvoltage: 6000 rvoltage: 6000 rvoltage: 6000 rtoroltage: 6000 rtoroltage: 6000 rtoroltage: 6000 rtoroltage: 6000 rtoroltage: 6000 rtoroltage: 6000 rtoroltage: 6000 rtoroltage: 6000 rvoltage: 6000 rtoroltage: 6000	nd current com range iput); range puts 1 M or less) z to 1 MHz, (125 Hz to 5 MHz, (25 Hz to 5 MHz, 5 hz to 1 MHz, 6 hz to 1 MHz, 1 MHz, 1 hz to 1 MHz, 1 hz	IΩ ±50 kΩ 50 - f) V 50 V synchroniz ero-cross fil on the numl tics equivale tit frequency eactive pow), loss (Los	
Crest factor Input resistance 50 Hz / 60 Hz) Maximum input volta Maximum rated volta o earth Measurement metho Sampling Trequency band Synchronization requency range Synchronization sou Data update rate LPF Polarity detection Noltage Measurement Sarameters Effective measurement ange	2.40000 3 (relativity however, 300 (relativity	W to 4.50000 e to voltage/ct 1.33 for 1500 inputs inputs inputs inputs nput terminal 00V; anticipate 00V; anticipate 00V; anticipate 2 MHz 2 MHz 2 MHz 11 to 16, DC (xt2 2 MHz 11 to 16, DC (xt2 3 MHz 11 to 16, DC (xt2 4 MHz 11 to 16, DC (xt2 5 mpla to 2 MHz 2 MHz 12 mHz 13 to 2 MHz 14 to 2 MHz 2 MHz 15 to 2 MHz 2 mHz 15 to 2 MHz 10 ms / 200 ms 10 ms / 200	0 V / 2.0 V / 5.1 MW (dependin arrent range rat V range, 1.5 fo 4 MΩ ±40 kΩ 1 MΩ ±50 kΩ 1 MΩ ±50 kΩ 000 V, ±200 V 000 V, ±200 V (50 Hz/60 Hz) d transient ove taneous digita fixed at data up fit de waveform d for U or I sele 3 raging, the da 4 (10 kHz / 50 kH LPF + digital IIF (0.1% rdg, to th is that are less t ing comparisor), active powe phase angle (φ Urf), current fr , voltage peak r: 1% to 110% c	0 V range) g on voltage au ing); r 5 V Probe 2 ir Probe 2 ing /peak (10 ms or uency of 250 kH quency of 250 kH quency of 250 kH quency of 250 kH quency of 250 kH rvoltage: 6000 rvoltage: 6000 rvoltage: 6000 rvoltage: 6000 rvoltage: 6000 rvoltage: 6000 rvoltage: 6000 rtoroltage: 6000 rtoroltage: 6000 rtoroltage: 6000 rtoroltage: 6000 rtoroltage: 6000 rtoroltage: 6000 rtoroltage: 6000 rtoroltage: 6000 rvoltage: 6000 rtoroltage: 6000	nd current com range iput); range puts 1 M or less) z to 1 MHz, (125 Hz to 5 MHz, (25 Hz to 5 MHz, 5 hz to 1 MHz, 6 hz to 1 MHz, 1 MHz, 1 hz to 1 MHz, 1 hz	IΩ ±50 kΩ 50 - f) V 50 V synchroniz ero-cross fil on the numl tics equivale tit frequency eactive pow), loss (Los	
Crest factor Trest factor Tr	2.40000 3 (relative however, 300 (rela however, 300 (rela however, Probe 1 Voltage Probe 1 Probe 2 age Voltage i CATII 60 CATII 60 CATII 10 CATII 10 0.1 Hz to 0.1 Hz	W to 4.50000 e to voltage/ct. 1.33 for 1500 inputs inputs inputs inputs inputs inputs inputs inputs inputs inputs input terminal JOV; anticipate 00V; anticipate 00V; anticipate 00V; anticipate 2 MHz 11 to 16, DC (ixt2 -cross point is the standard is the standard is the standard is the standard is the standard is the standard is the standard in frequencies correst tim ing simple av, ing iterations; to KHZ correst the standard is the standard	0 V / 2.0 V / 5.1 MW (dependin mrrent range rat V range, 1.5 fo 4 MQ ±40 kQ 1 MQ ±50 kQ 000 V, ±2000 V 1 MQ ±50 kQ 000 V, ±2000 V 000 V, ±2000 V 4 V, ±12 Vpeak ((50 Hz/60 Hz) 1 d transient ove d transient ove d transient ove d transient ove d transient ove d transient ove fixed at data up f the waveform f for U or I sele - - - - - - - - - - - - -	0 V range) g on voltage au ing); r 5 V Probe 2 in Probe 2 in Probe 2 in Probe 2 in (Jpeak (10 ms or uency of 250 kH iquency of 1 M kHz (10 ms or less) (10 ms or less) (10 ms or less) (10 ms or less) rvoltage: 6000 ervoltage: 6000 I sampling with date rate), a after passing ction. ta update rate 4z / 100 kHz / 5 filter (Butterwo e accuracy. han or equal to r (Upk), current of range	nd current com range iput); range iputs 1 M or less) z to 1 MHz, (125 Hz to 5 MHz, (225 Hz to 5 MHz, 5 00 th zero-cross through the zero- cross through through throug	hbinations) IΩ ±50 kΩ 50 - f) V 50 V synchroniz ero-cross fil on the numt tics equivale eactive pow (Loss (Los tegration (I	

Accuracy	of 0 V, after	zero-adjust		DC input, terminal-to-ground voltag	
			Voltage (U)	Current (I)	
DC			% rdg. ±0.03% f.s.	±0.02% rdg. ±0.03% f.s.	
0.1 Hz ≤ f <			% rdg. ±0.2% f.s.	±0.1% rdg. ±0.2% f.s.	
30 Hz ≤ f <			% rdg. ±0.05% f.s.	±0.03% rdg. ±0.05% f.s.	
45 Hz ≤ f ≤				•	
L			% rdg. ±0.02% f.s.	±0.02% rdg. ±0.02% f.s.	
66 Hz < f ≤			% rdg. ±0.04% f.s.	±0.03% rdg. ±0.04% f.s.	
1 kHz < f ≤			5 rdg. ±0.05% f.s.	±0.1% rdg. ±0.05% f.s.	
50 kHz < f ≤	100 kHz	±0.01×	f% rdg. ±0.2% f.s.	±0.01×f% rdg. ±0.2% f.s.	
100 kHz < f ≤	500 kHz	±0.008	×f% rdg. ±0.5% f.s.	±0.008×f% rdg. ±0.5% f.s.	
500 kHz < f	≤1 MHz	±(0.021	×f-7)% rdg. ±1% f.s.	±(0.021×f-7)% rdg. ±1% f.s.	
Frequency	/ band	2 MH	z (-3 dB, typical)	2 MHz (-3 dB, typical)	
		Ac	tive power (P)	Phase difference	
DC		±0.029	% rdg. ±0.05% f.s.	-	
0.1 Hz ≤ f <	< 30 Hz	±0.19	% rdg. ±0.2% f.s.	±0.1°	
30 Hz ≤ f <	: 45 Hz	±0.039	% rdg. ±0.05% f.s.	±0.05°	
45 Hz ≤ f ≤	66 Hz		% rdg. ±0.03% f.s.	±0.05°	
66 Hz < f ≤			% rdg. ±0.05% f.s.	±0.05°	
			-		
1 kHz < f ≤			% rdg. ±0.1% f.s.	±0.4°	
10 kHz < f ≤			% rdg. ±0.1% f.s.	±(0.040×f)°	
50 kHz < f ≤			<f% f.s.<="" rdg.="" td="" ±0.2%=""><td>±(0.050×f)°</td></f%>	±(0.050×f)°	
100 kHz < f ≤	500 kHz	±0.009	×f% rdg. ±0.5% f.s.	±(0.055×f)°	
500 kHz < f	≤1 MHz	±(0.047×	(f-19)% rdg. ±2% f.s.	±(0.055×f)°	
				ned in the table above: kHz	
	 Add ±20 µ (howeve µ (howeve µ (howeve µ Add ±0.05 and add ±0.5 and add ±0.5 and add ±0.1 her accur for 0.1 hzt The accur for 0.1 hzt The accur for 0.1 hzt The accur for 0.1 hzt Add ±0.02 figures are Even for in until the in For voltag difference 50 hHz <1 20 Hz <1 	V to the DC V; to the DC V; 2 V f.s.). % rdg. ±0.2, 0.2° to the pl acy figures to 0 10 Hz are acy figures to 0 10 Hz to acy figures to m 10 Hz to acy figures to r values of f acy figures to r values of f to values of f acy figures to v rought of values % rdg. for vi- reference v uput voltage: put resistan es in excess: accuracy: $f \le 5$ KHz: $\pm \le 200$ KHz:	% f.s. for current and hase at or above 10 k for voltage, current, a reference values. for voltage, active pow such that 30 kHz < f: r voltage, active powe ues of fsuch that 100 lotage and active powe alues). s that are less than 11 ce temperature falls. s of 600 V, add the fol 0.3° 0.5° $\pm 1^{\circ}$	and active power when using Prot active power when using Prote 2, Hz. ctive power, and phase difference wer, and phase difference in exces alues. ver, and phase difference in exces ≤ 100 kHz are reference values. r, and phase difference in excess o kHz <f <math="">\leq 1 MHz are reference values. Hz <f <math="">\leq 1 MHz are reference values. NHz <f <math="">\leq 1 MHz are reference value.</f></f></f>	
	Measuren	rs	Accuracy		
	Apparent			current accuracy ±10 dgt.	
	Reactive	power	Apparent power acc		
			(√2.69 × 10 ⁻⁴ ×f + 1.	$0022 - \lambda^2 - \sqrt{1 - \lambda^2}$) × 100% f.s.	
	Power fac	tor		ifference accuracy) × 100%rdg. ± 500	
		aveform peak Voltage/current RMS accuracy ±1% f.s. (f.s.: apply 300% of range)			
	λ: Display	value for po			
Effects of temperatur Ind humidity	Add the following to the voltage, current, and active power accuracy with range of 0°C to 20°C or 26°C to 40°C: ±0.01% rdg./°C (add 0.01%; 15./°C for DC measured values) For current and active power when using Probe 2, ±0.02% rdg./°C (add f.s./°C for DC measured values) Under conditions of 60% RH or greater: Add ±0.0006 × humidity [%RH] x f [kHz]% rdg. to the voltage and active power ac Add ±0.0006 × humidity [%RH] × f [kHz]% for the phase difference.			asured values) robe 2, ±0.02% rdg./°C (add 0.05 the voltage and active power accurac	
Effects of common- node voltage	100 kHz :	inputtern 80 dB or CMRR whe	ninals and the enclose greater (reference va		
Effects of external nagnetic fields			agnetic field of 400 A/	m, DC or 50 Hz/ 60 Hz)	
Effects of power facto	φ of other t	han ±90°:	$\pm \left(1 - \frac{\cos{(\phi + phas)}}{\cos{(\phi + phas)}}\right)$	$\frac{e \text{ difference accuracy}}{s(\phi)} $ × 100%rdg.	
	φ of ±90°:		±cos (φ + phase	difference accuracy) × 100% f.s.	

Frequency measurement

Number of measurement channels	Max. 6 channels (f1 to f6), based on the number of input channels				
Measurement source	Select from U/I for each connection.				
Measurement method	Reciprocal method + zero-cross sampling value correction Calculated from the zero-cross point of waveforms after application of the zero- cross filter.				
Measurement range	0.1 Hz to 2 MHz (Display shows 0.00000 Hz or Hz if measurement is not possible.)				
Accuracy	±0.01Hz (Only when measuring 45-66 Hz with a minimum measurement interval of 50 ms and sine input of at least 50% relative to the voltage range when measuring the voltage frequency.) ±0.05% rdg ± 1 dgt. (other than the conditions mentioned above, when the sine wave is at least 30% relative to the measurement source's measurement range)				
Display format	0.10000 Hz to 9.99999 Hz, 9.9000 Hz to 99.9999 Hz, 99.000 Hz to 999.999 Hz, 0.99000 KHz to 9.99999 KHz, 9.9000 KHz to 99.9998 Hz, 99.000 kHz to 999.999 kHz, 0.99000 MHz to 2.00000 MHz				

Integration measurement

Measurement modes	Select RMS or DC for each connection (DC mode can only be selected when using an AC/DC sensor with a 1P2W connection).			
Measurement parameters	$\label{eq:current} \begin{array}{l} \mbox{Current integration (Ih+, Ih-, Ih), active power integration (WP+, WP-, WP) \\ \mbox{Ih+ and Ih- are measured only in DC mode. Only Ih is measured in RMS mode.} \end{array}$			
	Digital calculation based on current and active power values			
Measurement method	DC mode Every sampling interval, current values and instantaneous power values are integrated separately for each polarity.			
Measurement method	RMS mode The current RMS value and active power value are integrated for each measurement interval. Only active power is integrated separately for each polarity.			
Display resolution	999999 (6 digits + decimal point), starting from the resolution at which 1% of each range is f.s.			
Measurement range	0 to ±9999.99 TAh/TWh			
Integration time	10 sec. to 9999 hr. 59 min. 59 sec.			
Integration time accuracy	±0.02% rdg. (0°C to 40°C)			
Integration accuracy	±(current or active power accuracy) ±integration time accuracy			
Backup function	None			

Harmonics measurement

Number of measurement channels	Max. 6 channels, based on the number of built-in channels
Synchronization source	Based on the synchronization source setting for each connection.
Measurement modes	Select from IEC standard mode or wideband mode (setting applies to all channels).
Measurement parameters	Harmonic voltage RMS value, harmonic voltage content ratio, harmonic voltage phase angle, harmonic current RMS value, harmonic current content ratio, harmonic current phase angle, harmonic active power, harmonic power content ratio, harmonic voltage/current phase difference, total voltage harmonic distortion, total current harmonic distortion, voltage unbalance ratio, current unbalance ratio
FFT processing word length	32 bits
Antialiasing	Digital filter (automatically configured based on synchronization frequency)
Window function	Rectangular
Grouping	OFF / Type 1 (harmonic sub-group) / Type 2 (harmonic group)
THD calculation method	THD_F / THD_R (Setting applies to all connections.) Select calculation order from 2nd order to 100th order
(*) 150	(however, limited to the maximum analysis order for each mode).
IEC standard r	node
Measurement method	Zero-cross synchronization calculation method (same window for each synchronization source) Fixed sampling interpolation calculation method with average thinning in window IFC 61000-4-72002 compliant with gap overlap.

		TEC 61000-4-7.2002 compliant with gap overlap					
Synchronization frequency range 45 Hz			66 Hz				
Data update rate Fixed			200 ms.				
Analysis orders Oth to			th				
Window wave number WI		When les	s than 56 Hz, 10 waves; whe	n 56 Hz or greater, 12 wa	ives		
Number of	FFT points	4096 poi	nts				
	Frequ	ency	Harmonic voltage and current	Harmonic power	Phase difference		
	DC (0th order)		±0.1% rdg. ±0.1% f.s.	±0.1% rdg. ±0.2% f.s.			
	45 Hz ≤ f ≤ 66 Hz		±0.2% rdg. ±0.04% f.s.	±0.4% rdg. ±0.05% f.s.	±0.08°		
Accuracy	66 Hz < f ≤ 440 Hz		±0.5% rdg. ±0.05% f.s.	±1.0% rdg. ±0.05% f.s.	±0.08°		
	440 Hz < f ≤ 1 kHz		±0.8% rdg. ±0.05% f.s.	±1.5% rdg. ±0.05% f.s.	±0.4°		
	1 kHz < f ≤	≤ 2.5 kHz	±2.4% rdg. ±0.05% f.s.	±4% rdg. ±0.05% f.s.	±0.4°		
	2.5 kHz < f	≤ 3.3 kHz	±6% rdg. ±0.05% f.s.	±10% rdg. ±0.05% f.s.	±0.8°		
Unit for f in accuracy calculations as mentioned in the table above: kHz							
			defined for a power factor of				
Accuracy			specifications are defined f	or fundamental wave in	put that is greater		
			qual to 50% of the range.				

than or equal to 50% of the range. Add the current sensor accuracy to the above accuracy figures for current, active power, and phase difference. Add ±0.02% rdg. for voltage and active power at or above 1000 V (however, figures are reference values). Even for input voltages that are less than 1000 V, the effect will persist until the input resistance temperature falls.

(2) Wideband mode

(2) 0010								
		Zero-cross synchronization calculation method (same window				e window for each		
Measurement method		synchronization source) with gaps Fixed sampling interpolation calculation method						
		F	ixed sa	impling interpolation	n calculat	ion method		
Synchror		0	.1 Hz to	300 kHz				
frequency		-						
Data upd	ate rate	F	ixed at	50 ms.				
				Frequency	Windo	w wave number	Max	imum analysis order
				IHz ≤ f < 80Hz		1		100th
				Hz ≤ f < 160 Hz		2		100th
) Hz ≤ f < 320 Hz		4		60th
Movimum	n analysis) Hz ≤ f < 640 Hz		2		60th
order and			64	0 Hz ≤f < 6 kHz		4		50th
	, wave number			(Hz ≤ f < 12 kHz		2		50th
			12	kHz ≤ f < 25 kHz		4		50th
				kHz ≤ f < 50 kHz		8		30th
				KHz ≤ f < 101 kHz		16		15th
				kHz ≤ f < 201 kHz		32		7th
			201	kHz ≤ f ≤ 300 kHz		64		5th
The ir			strument provides phase zero-adjustment functionality using keys or unications commands (only available when the synchronization source is					
Phase ze	ro-adjustment				s (only av	vailable when the	syncl	hronization source is
		s	set to Ext).					
Acouroou		A	Add the following to the accuracy figures for voltage (U), current (I), active power					
Accuracy				phase difference. (
	Frequer	iCy	/	Harmonic voltage an	d current	Harmonic pow	er	Phase difference
	DC			±0.1% f.s.		±0.2% f.s.		-
	0.1 Hz ≤ f <			±0.05% f.s.		±0.05% f.s.		±0.1°
	30 Hz ≤ f <			±0.1% f.s.		±0.2% f.s.		±0.1°
	45 Hz ≤ f ≤			±0.05% f.s.		±0.1% f.s.		±0.1°
	66 Hz < f ≤			±0.05% f.s.		±0.1% f.s.		±0.1°
	1 kHz < f ≤ '			±0.05% f.s.		±0.1% f.s.		±0.6°
	10 kHz < f ≤			±0.2% f.s.		±0.4% f.s.		±(0.020×f)° ±0.5°
	50 kHz < f ≤ '			±0.4% f.s.		±0.5% f.s.		±(0.020×f)° ±1°
	100 kHz < f ≤			±1% f.s.		±2% f.s.		±(0.030×f)° ±1.5°
	500 kHz < f ≤			±4% f.s.		±5% f.s.		±(0.030×f)° ±2°
				f in accuracy calcul				
		11	The fia	ures for voltage, cu	rent. pov	wer, and phase di	fferer	nce for frequencies

Unit for f in accuracy calculations as mentioned in the table above: kHz The figures for voltage, current, power, and phase difference for frequencies in excess of 300 kHz are reference values. When the fundamental wave is outside the range of 16 Hz to 850 Hz, the figures for voltage, current, power, and phase difference for frequencies other than the fundamental wave is within the range of 16 Hz to 850 Hz, the figures for voltage, current, power, and phase difference in excess of 6 kHz are reference values. Accuracy values for phase difference are defined for input for which the voltage and current for the same order are at least 10% f.s.

Waveform recording

	0		
Number of measurement channels	Voltage and current Max. 6 channels (based on the number of installed channels) Motor waveforms * Max. 2 analog DC channels + max. 4 pulse channels		
Recording capacity	1 Mword × ((voltage + current) × number of channels + motor waveforms *)		
Waveform resolution	16 bits (Voltage and current waveforms use the upper 16 bits of the 18-bit A/D.)		
Sampling speed	Voltage and current Always 5 MS/s waveforms * Always 50 kS/s		
	Motor pulse * Always 5 MS/s		
Compression ratio	1/1, 1/2, 1/5, 1/10, 1/20, 1/50, 1/100, 1/200, 1/500 (5 MS/s, 2.5 MS/s, 1 MS/s, 500 KS/s, 250 kS/s, 100 KS/s, 50 KS/s, 25 KS/s, 10 kS/s) However, motor waveforms* are only compressed at 50 kS/s or less.		
Recording length	1 kWord / 5 kWord / 10 kWord / 50 kWord / 100 kWord / 500 kWord / 1 Mword		
Storage mode	Peak-to-peak compression or simple thinning		
Trigger mode	SINGLE or NORMAL (with forcible trigger setting)		
Pre-trigger	0% to 100% of the recording length, in 10% steps		
Trigger source	Voltage and current waveform, waveform after voltage and current zero-cross filter, manual, motor waveform*, motor pulse*		
Trigger slope	Rising edge, falling edge		
Trigger level	±300% of the range for the waveform, in 0.1% steps		
	*Motor waveform and motor pulse: Motor Analysis and D/A-equipped models only		

FFT analysis

Measurement channel	Voltage-Current Waveform - 1 channel (selected from input channels) Motor Waveform - Analog DC Analysis performed only when FFT screen is displayed	
Calculation type	RMS spectrum	
Number of FFT points 1,000, 5,000, 10,000 or 50,000 points		
FFT processing word length	32 bits	
Analysis position	Any desired position among the waveform record data	
Antialiasing	Automatic Digital Filter (during simple thinning mode) None (During Peak-Peak compression mode, use the Max value and perform FFT)	
Window function	Rectangular/Hanning/Flat-top	
Max. analysis frequency	Linked with compression ratio of waveform records. 2 MHz, 1 MHz, 400 kHz, 200 kHz, 100 kHz, 40 kHz, 20 kHz, 10 kHz or 4 kHz / 20 kHz, 10 kHz, or 4kHz during analog DC input (Mentioned above frequency - frequency resolution) becomes the maximum analysis frequency	
FFT peak value display	Compute 10 frequencies and voltage-current peak value levels (local maximum value) each starting from the top, ordered by level / For FFT calculation results, recognize as the peak value when the data on both sides is lower than the original data	

Motor Analysis (PW6001-11 to -16 only)

Number of input channels	4 channels CH A Analog DC input / Frequency input / Pulse input				
	CH B Analog DC input / Frequency input / Pulse input CH C Pulse input				
	CH D Pulse input				
Operating mode	Single, dual, or independent input				
Input terminal profile	Isolated BNC connectors				
Input resistance (DC)	1 MΩ ±50 kΩ				
Input method	Function-isolated input and single-end input				
Measurement parameters	Voltage, torque, rpm, frequency, slip, motor power				
Maximum input voltage	±20 V (analog DC and pulse operation)				
Additional conditions for guaranteed accuracy	Input: Terminal-to-ground voltage of 0 V, after zero-adjustment				
(1) Analog DC inpu					
Measurement range	±1 V / ±5 V / ±10 V				
Effective input range	1% to 110% f.s.				
Sampling	50 kHz, 16 bits				
Response speed	0.2 ms (when LPF is OFF)				
Measurement method	Simultaneous digital sampling, zero-cross synchronization calculation method (averaging between zero-crosses)				
Measurement accuracy	±0.05% rdg. ±0.05% f.s.				
Temperature coefficient	±0.03% f.s./°C				
Effects of common- mode voltage	$\pm 0.01\%$ f.s. or less with 50 V applied between the input terminals and the enclosure (DC / 50 Hz / 60 Hz)				
LPF	OFF (20 kHz) / ON (1 kHz)				
Display range	From the range's zero-suppression range setting to ±150%				
Zero-adjustment	Voltage ±10% f.s., zero-correction of input offsets that are less				
(2) Frequency input	(CH A/CH B)				
Detection level	Low: 0.5 V or less; high: 2.0 V or more				
Measurement frequency band	0.1 Hz to 1 MHz (at 50% duty ratio)				
Minimum detection width	0.5 µs or more				
Measurement accuracy	±0.05% rdg. ±3 dgt.				
Display range	1.000 kHz to 500.000 kHz				
(3) Pulse input (CH	A / CH B / CH C / CH D)				
Detection level	Low: 0.5 V or less; high: 2.0 V or more				
Measurement frequency band	0.1 Hz to 1 MHz (at 50% duty ratio)				
Minimum detection width	0.5 µs or more				
Pulse filter	OFF / Weak / Strong (When using the weak setting, positive and negative pulses of less than 0.5 µs are ignored. When using the strong setting, positive and negative pulses of 5 µs are ignored.)				
Measurement accuracy	±0.05% rdg. ±3 dgt.				
Display range	0.1 Hz to 800.000 kHz				
Unit	Hz / r/min.				
Frequency division setting range	1~60000				
Rotation direction detection	Can be set in single mode (detected based on lead/lag of CH B and CH C).				

D/A output (PW6001-11 to -16 only)

Number of output channels	20 channels			
Output terminal profile	D-sub 25-pin connector x 1			
Output details	 Switchable between waveform output and analog output (select from basic measurement parameters). Waveform output is fixed to CH1 to CH12. 			
D/A conversion resolution	16 bits (polarity + 15 bits)			
Output refresh rate	Analog output Waveform output	10 ms / 50 ms / 200 ms (based on data update rate for the selected parameter) 1 MHz		

Output voltage	Analog output Waveform output	±5 V DC f.s. (max. approx. ±12 V DC) Switchable between ±2 V f.s. and ±1 V f.s., crest factor of 2.5 or greater. Setting applies to all channels.
Output resistance	100 Ω ±5 Ω	
	Analog output	Output measurement parameter measurement accuracy ±0.2% f.s. (DC level)
Output accuracy	Waveform output	Measurement accuracy ±0.5% f.s. (at ±2 V f.s.) or ±1.0% f.s. (at ±1 V f.s.) (RMS value level, up to 50 kHz)

(2) Scaling

Temperature coefficient ±0.05% f.s./°C

Display section

Display characters	English, Japanese, Chinese (simplified)			
Display	9" WVGA TFT color LCD (800 × 480 dots) with an LED backlight and analog resistive touch panel			
Display value resolution	999999 count (including integration values)			
Display refresh rate	Measured Approx. 200 ms (independent of internal data update rate) values When using simple averaging, the data update rate varies based on the number of averaging iterations. Waveforms Based on display settings			

External interface

USB flash drive	einterface				
Connector	USB Type A connector × 1				
Electrical specifications	USB 2.0 (high-speed)				
Power supplied	Max. 500 mA				
Supported USB flash drives	USB Mass Storage Class compatible				
Recorded data	- Save/load settings files - Save measured values/automatic recorded data (CSV format) - Copy measured values/recorded data (from internal memory) - Save waveform data, save screenshots (compressed BMP format)				
(2) LAN interface					
Connector	RJ-45 connector × 1				
Electrical specifications	IEEE 802.3 compliant				
Transmission method	10Base-T / 100Base-TX / 1000Base-T (automatic detection)				
Protocol	TCP/IP (with DHCP function)				
Functions	HTTP server (remote operations) Dedicated port (data transferring, command control) FTP server (file transferring)				
(3) GP-IB interface	e				
Communication method	IEEE 488.1 1987 compliant developed with reference to IEEE 488.2 1987 Interface functions: SH1, AH1, T6, L4, SR1, RL1, PP0, DC1, DT1, C0				
Addresses	00 to 30				
Functions	Command control				
(4) RS-232C intert	face				
Connector	D-sub 9-pin connector × 1, 9-pin power supply compatible, also used for external control				
Communication method	RS-232C, EIA RS-232D, CCITT V.24, and JIS X5101 compliant Full duplex, start stop synchronization, data length of 8, no parity, 1 stop bit				
Flow control	Hardware flow control ON/OFF				
Communications speed	9,600 bps / 19,200 bps / 38,400 bps / 57,600 bps / 115,200 bps / 230,400 bps				
Functions	Command control LR8410 Link supported (dedicated connector is required) Used through exclusive switching with external control interface				
(5) External control	ol interface				
Connector	D-sub 9-pin connector × 1, 9-pin power supply compatible, also used for RS-232C				
Power supplied	OFF/ON (voltage of +5 V, max. 200 mA)				
Electrical specifications	0/5 V (2.5 V to 5 V) logic signals or contact signal with terminal shorted or open				
Functions	Same operation as the [START/STOP] key or the [DATA RESET] key on the control panel Used through exclusive switching with RS-232C				
(6) Two-instrumen	t synchronization interface				
Connector	SFP optical transceiver, Duplex-LC (2-wire LC)				
Optical signal	850 nm VCSEL, 1 Gbps				
Laser class	Class 1				
Fiber used	50/125 μ m multi-mode fiber equivalent, up to 500 m				
Functions	Sends data from the connected slave instrument to the master instrument, which performs calculations and displays the results.				

Auto-range function

Functions	The voltage and current ranges for each connection are automatically changed in response to the input.		
Operating mode	OFF/ON (selectable for each connection)		
Auto-range breadth	Broad/narrow (applies to all channels) Wide The range is increased by one if the peak value is exceeded for the con- nection or if there is an RMS value that is greater than or equal to 110% f.s The range decreases by two if all rms values drop below 10% f.s. within the connection Narrow The range is increased by one if the peak value is exceeded for the con- nection or if there is an RMS value that is greater than or equal to 105% f.s The range decreases by one if all rms values drop below 40% f.s. within the connection The voltage range decrease multiplies and judges the range $\frac{1}{\sqrt{3}}$ when the Δ-Y transformer is on		

Time control function

Timer control	OFF, 10 sec. to 9999 hr. 59 min. 59 sec. (in 1 sec. steps)
Actual time control	OFF, start time/stop time (in 1 min. steps)
	OFF / 10 ms / 50 ms / 200 ms / 500 ms / 1 sec. / 5 sec. / 10 sec. / 15 sec. / 30 sec. 1 min. / 5 min. / 10 min. / 15 min. / 30 min. / 60 min.

Hold functionality

Hold	Stops updating the display with all measured values and holds the value currently being displayed. Used exclusively with the peak hold function.
Peak hold	Updates the measured value display each time a new maximum value is set. Used exclusively with the hold function.

Calculation functionality

()	
Functions	Selects the voltage and current values used to calculate apparent and reactive power and power factor.
Operating mode	RMS/mean (Can be selected for each connection's voltage and current.)

(3) Averaging (AV Functions	All instantaned	ous measur	ed values,	including h	armonics,	are avera	ged.	
Operating mode	OFF / Simple averaging / Exponential averaging							
	Simple averaging	for each da	ita update c	ycle, and th	e output d	ata is upda	ted.	
Operation	Exponential	The data up	date rate is ponentially	lengthened	by the numb	per of avera	ging iteratior	
	averaging	the data up	date rate a	and the exp	onential av	veraging re	esponse rat	
	During averagin		-	lata is used	for all ana	log output a	and save da	
Number of simple	iterati	ons	5	10	20	50	100	
averaging iterations	Data	10 ms 50 ms	50 ms 250 ms	100 ms 500 ms	200 ms 1 sec.	500 ms 2.5 sec.	1 sec. 5 sec.	
	update rate	200 ms	1 sec.	2 sec.	4 sec.	10 sec.	20 sec.	
		Setting	10 ms	FAST		ID Sec	SLOW 5 sec.	
Exponential averaging	Data 10 ms 0.1 sec. 0.8 sec. 5 sec. update rate 50 ms 0.5 sec. 4 sec. 25 sec. 200 ms 2.0 sec. 16 sec. 10 sec.							
response rate	These values indicate the time required for the final stabilized value to converge							
	on ±1% when t							
(4) User-defined of	1							
Functions	User-specifie specified calcu			nt param	eters are	calculate	ed using t	
	Four basic me are four-arithm			tants with	a maximu	m of 6-dig	its; operat	
	UDFn = ITEM1	□ ITEM2 □	ITEM3 🗆 I					
	ITEMn : basic : any one of -	+, -, *, or /						
Calculated items	UDFn can also The functions							
	as follows: neg exp, asin, acos	, sin, cos, ta	an, sqrt, ab	s, log10 (c				
	When a UDFn	with an n	higher tha		ent UDF is	encounte	ed, previou	
Number of allowed	calculated valu							
calculations Maximum value setting) u to 100 () T / Funct	ions as a l	IDEn rang	
Unit	Up to 6 charac				, , , , , unot	iono do d	obriniting	
(5) Efficiency and	loss calcula	ations						
Calculated items	Active power va (Motor Analysis							
Number of calculations	Four each for e			dois only) i			connection	
that can be performed	Calculated iter			o(n) and B	ut(n) in th	o following	formati	
Formula	Pin = Pin1 + Pi	n2 + Pin3 +	Pin4, Pour	t = Pout1 +				
	$\eta = 100 \times \frac{IPou}{IPin}$	<u>tl</u> , Loss = IF	Pinl - IPoutl					
(6) Power formula								
Functions	Selects the rea		r, power fa	ctor, and p	ower phas	e angle fo	rmulas.	
	TYPE1 C	ompatible v						
Formula		ompatible v he sign of t						
	-	sed as the a	active powe	er signs.			-	
(7) Delta conversi	ion							
		nen using a Itage wave						
Functions		utral point. hen using a	a 3P4W co	onnection	converts	the nhas	e voltage	
T unctions		veform to a				the phae	io vonago	
	Voltage RMS calculated usir				eters, inc	luding ha	rmonics, a	
(8) Current senso								
Functions	Compensates t							
	Compensation		-				nce.	
Compensation value settings	Frequency 0.1 kHz to 999.9 kHz (in 0.1 kHz steps) Phase difference 0.00deg to ±90.00deg (0.01deg intervals)							
settings	However, the difference in time calculated from the frequency phase difference can be up to 98 μ s in 0.5ns intervals							
Dianlay fun			sintervais					
Display fun (1) Connection co								
	Displays a con		oram and v	oltage and	current v	ectors has	ed on the	
Functions	selected meas	urement lin	es.	-				
	The ranges for the connection			are display	ed on the	vector dis	piay so tria	
Mode at startup	User can select (startup screen		the conne	ction confi	mation sc	reen at sta	artup	
Simple settings	Commercial po	ower supply				h-resoluti	on HD / DC	
(2) Vector display	DC high-resolu	Jtion HD / P	ww./High	-trequency	/ Other			
	Displays a cor	nection-sp	ecific vect	or graph a	ong with	associated	d level valu	
Functions	and phase and			<u>-</u>				
(3) Numerical disp	lay screen							
Functions	Displays pow instrument cha		ed values	and moto	measure	ed values	for up to	
	Basic by	Displays n	neasured v			ement line	es and	
	connection		mbined in t four measi			: U, I, P, a	nd Integ.	
			numerical er has sele					
Display patterns	Selection display	that the us				user.	-	
Display patterns	Selection display		s in the loc					
	display	parameter						
(4) Harmonic disp	display Dlay screen	parameter There are	s in the loc 4-, 8-, 16-,	and 32-dis	play patte			
	display Diay screen Displays harm Display bar g	parameter There are onic measu raph: Disp	s in the loc 4-, 8-, 16-, red values lays harm	and 32-dis on the inst	play patte	screen.	ers for us	
(4) Harmonic disp	display Diay screen Displays harm	onic measu raph: Disp nels as a ba	red values red values lays harm ar graph.	on the inst onic mea	rument's s	screen. paramet		
(4) Harmonic disp Functions Display patterns	display Dlay screen Displays harm Display bar g specified chan Display list: Di specified chan	onic measu raph: Disp nels as a bi splays num	red values red values lays harm ar graph.	on the inst onic mea	rument's s	screen. paramet		
(4) Harmonic disp Functions Display patterns (5) Waveform disp	display blay screen Displays harm Display bar g specified chan Display list: Di specified chan play screen	parameter There are onic measu raph: Disp nels as a ba isplays num nels.	s in the loc 4-, 8-, 16-, red values alays harm ar graph. herical valu	and 32-dis on the inst tonic mea ues for use	rument's s surement r-specified	screen. paramet d paramet		
(4) Harmonic disp Functions Display patterns	display Dlay screen Displays harm Display bar g specified chan Display list: Di specified chan	parameter There are onic measu raph: Disp nels as a ba isplays num nels.	s in the loc 4-, 8-, 16-, red values alays harm ar graph. herical valu current wa	and 32-dis on the inst tonic mea ues for use veforms ar	rument's s surement r-specified id motor w	screen. paramet d paramet		

Simplified Graph Function (1) D/A Monitor Graph

Functions	Graph measured values chosen as D/A output items in chronological order Illustrated waveforms are Peak-Peak compressed by setting time axis to data at data update rate, and data is not recorded.
Operations	Start and stop drawing with the RUN/STOP button Illustrate the displayed value during hold and peak hold Illustrated data is cleared when Clear button is pressed during changes in settings related to measured values of range and D/A output items
Number of illustrated items	Maximum of 8 items
Illustrated items	Operates simultaneously with D/A output items from CH13 to CH20 settings
Time axis	10 ms/dot to 48 min/dot (Cannot be selected below the data update rate)
Vertical axis	Autoscaling (operates to fit data on screen within screen display range with time axis) Manual (user sets displayed maximum value and minimum value)
(2) X-Y Plot	
	Select horizontal and vertical axis items from fundamental measurement items

	and display X-Y graph
	Dot illustrations are done at data update rate, and data is not recorded
Functions	Illustration data can be cleared / a total of two combinations of graphs can be displayed: X1-Y1 or X2-Y2
	Gauge display, displayed max value and min value settings are allowed
	X1, Y1, X2, and Y2 operate in synchronization with D/A output item settings for CH13, 14, 15, and 16 respectively

Automatic save function

Functions	Saves the specified measured values in effect for each interval.		
Save destination	OFF / Internal memory / USB flash drive		
Saved parameters	User-selected from all measured values, including harmonic measured values		
Maximum amount of saved data	Internal memory 64 MB (data for approx. 1800 measurements) USB flash drive Approx. 100 MB per file (automatically segmented) × 20 files		
Data format	CSV file format		

Manual save function (1) Measurement data

Functions	The [SAVE] key saves specified measured values at the time it is pressed. Comment text can be entered for each saved data point, up to a maximum of 20 alphanumeric characters. *The manual save function for measurement data cannot be used while automatic save is in progress.
Save destination	USB flash drive
Saved parameters	User-selected from all measured values, including harmonic measured values
	CSV file format
Data format	
Data format (2) Waveform da	
	ta (Within touch panel) Use Save Waveforms Button to save waveform data during that session Input comments for each set of saved data
(2) Waveform da	ta (Within touch panel) Use Save Waveforms Button to save waveform data during that session
(2) Waveform da	ta (Within touch panel) Use Save Waveforms Button to save waveform data during that session Input comments for each set of saved data "Cannot be operated when waveform data is invalid during storage and automatic saving

(3) Screenshots

Functions	The [COPY] key saves a screenshot to the save destination. *This function can be used at an interval of 1 sec or more while automatic saving is in progress.
Save destination	USB flash drive
Comment entry	OFF / Text / Handwritten When set to [Text], up to 40 alphanumeric characters When set to [Handwritten], hand-drawn images are pasted to the screen.
Data format	Compressed BMP

(4) Settings data

Functions	Saves settings information to the save destination as a settings file via functionality provided on the File screen. In addition, previously saved settings files can be loaded and their settings restored on the File screen. However, language and communications settings are not saved.
Save destination	USB flash drive
(5) FFT data	

Functions	(Within touch panel) Use Save FFT Spectrum button to save waveform data during that session Input comments for each set of saved data "Cannot be operated when waveform data is invalid during storage and automatic saving "Cannot be operated when waveform data is invalid during storage and automatic saving "
Save destination	USB flash drive - Assign destinations for saved data
Comment entry	OFF/ON - up to 40 letters/symbols
Data format	CSV file format (with read-only attribute set)

Two-instrument synchronization function

Sends data from the connected slave instrument to the master instrument, which performs calculations and displays the results. In numerical synchronization mode, the master instrument operates as a power meter with up to 12 channels. In waveform synchronization mode, the master instrument operates while synchronizing up to three channels from the slave instrument at the waveform level.					
	/ Waveform synchronization be selected when the data update rate is 10 ms. tes only when master device has more than 3				
,	Data update timing, start/stop/data reset Voltage/current sampling timing				
Numerical synchronization mode Waveform synchronization mode					
Numerical synchronization mode	Basic measurement parameters for up to six channels (including motor data)				
Waveform synchronization mode	Voltage/current sampling waveforms for up to three channels (not including motor data). However, the maximum number of channels is limited to a total of six, including the master instrument's channels.				
	performs calculations and display In numerical synchronization mo meter with up to 12 channels. In waveform synchronization synchronizing up to three channels OFF / Numerical synchronization Numerical synchronization cannot Waveform synchronization mode Waveform synchronization mode Numerical synchronization mode Numerical synchronization mode Waveform synchronization mode Numerical synchronization mode				

Basic formula

ParameterWring ParameterIP2WIP3W3P3W2M3V3A3P3W3M3P4WParameterXmms(0)= $\frac{1}{M}\sum_{i=1}^{M} (X_{ini})$ Xmms(0)(+1) = $\frac{1}{M} (X_{ini})$ Xmms(0)(+1) = $\frac{1}{M} (X_{ini})$ Xmms(0)	Duolo	onnulu					
Current model in the interval of the second	~ *	1P2W	1P3W	3P3W2M	3V3A	3P3W3M	3P4W
$\begin{aligned} \frac{V(true product}{V(true product}, V(true product), V(true product product$	Voltage,	Xrms(i)=	Xrms(i,)(i+1) =	$Xrms123 = \frac{1}{2}(X)$	rms1+ Xrms?	+Xrms3)
$ \begin{aligned} & \text{Ann}(0)(\pm 1) = \\ & \text{Ann}(0)(\pm 1) = \\ & \text{Ann}(0)(\pm 1) = \\ & \frac{1}{2}(2 \ln \frac{1}{2}) \ln \frac{1}{2} \ln 1$	RMS value (True RMS)	$\sqrt{\frac{1}{M}\sum_{s=0}^{M-1} (X(i)s)^2}$	1/2 (Xrms(i) -	+ Xrms(i+1))	, i		
rectification mix $\frac{1}{2\sqrt{2}} \frac{1}{M} \sum_{k=1}^{k} X_{0} _{k} = \frac{1}{2} (Xmn(l) + Xmn(l) + Xmn(l+1)) Xmn456 = \frac{1}{3} (Xmn4 + Xmn5 + Xmn6) Mix equivalent Voltage, \frac{1}{\sqrt{2}} \sum_{k=1}^{k} X_{0} _{k} = \frac{1}{\sqrt{2}} \sum_{k=1}^{k} X_{0} $	current		Xmn(i)	(<i>i</i> +1) =	Xmn123 = <u>1</u> (Xmn1+ Xmn2+ Xmn3)		
$\begin{aligned} & \text{Current} \\ & \text{Accay value} \\ \hline & \text{Voltage,} \\ & \text{Current} \\ & \text{Average value} \\ \hline & \text{Voltage,} \\ & \text{Current} \\ & \text{Average value} \\ \hline & \text{Voltage,} \\ & \text{Current} \\ & \text{Average value} \\ \hline & \text{Voltage,} \\ & \text{Current} \\ & \text{Average value} \\ \hline & \text{Voltage,} \\ & \text{Current} \\ & \text{Average value} \\ \hline & \text{Voltage,} \\ & \text{Current} \\ & \text{Average value} \\ \hline & \text{Voltage,} \\ & \text{Current} \\ & \text{Average value} \\ \hline & \text{Voltage,} \\ & \text{Current} \\ & \text{Average value} \\ \hline & \text{Voltage,} \\ & \text{Current} \\ & \text{Average value} \\ \hline & \text{Voltage,} \\ & \text{Current} \\ & \text{Active power} \\ \hline & \text{Active power} \\ \hline & \frac{1}{M_{D_{e}}^{2}(U_{0}) \times V_{0}(v_{0})} \\ \hline & \text{P}(U_{1}(1) = D_{1}(P_{1}(1)) \\ & \text{Active power} \\ \hline & \frac{1}{M_{D_{e}}^{2}(U_{0}) \times V_{0}(v_{0}) \\ & \text{Active optimely file distance duration of using the understand overlap of using the UN_{1}(V_{1}) \\ & \text{Active power} \\ \hline & \frac{1}{M_{D_{e}}^{2}(U_{0}) \times V_{0}(v_{1}) \\ & \frac{1}{S}(U_{1}(1)(U_{1}) \\ & \frac{S(U_{1}(1)(U_{1})}{S}(U_{1}(1)(U_{1}) \\ & \frac{S(U_{1}(1)(U_{1})}{S}(U_{1}(1)(U_{1}) \\ & \frac{S(U_{1}(1)(U_{1})}{S}(U_{1}(1)(U_{1}) \\ & \frac{S(U_{1}(U_{1}(1) = Q_{1}(U_{1}(1)) \\ & \frac{S(U_{1}(U_{1}(1) = Q_{1}(U_{1}(U_{1}(1)) \\ & \frac{S(U_{1}(U_$	rectification RMS equivalent	$\frac{\pi}{2\sqrt{2}} \frac{1}{M} \sum_{S=0}^{M-1} X_{(i)S} $	1/2 (Xmn(i)-	+Xmn(i+1))	$Xmn456 = \frac{1}{3}(Xn)$	mn4+ Xmn5+	Xmn6)
$\begin{aligned} \begin{aligned} & Xdc(i) = \frac{1}{M_{2}^{2}} X_{0} \otimes X_{0}$	current	$Xac(i) = \sqrt{(Xms(i))^2 - (Xdc(i))^2}$					
Voltage, Eurorent Fundamental wave composed $X1(i)$ for harmonic voltage and current in the harmonic formula wave composed $Xp(k+(i) = X(i)$ s Max. value for M items 	current	$Xdc(i) = \frac{1}{M} \sum_{s=a}^{M-1} X(i)s$					
$\frac{\operatorname{current}}{\chi_{p}k_{i}(0)} = \chi(j)s \operatorname{Min. value for Miterns} \\ \chi_{p}k_{i}(0) = \chi(j)s \chi_{p}(j)s \chi_{p}(j)s \chi_{p}(j)s \chi_{p}(j)s \\ \chi_{p}(j) = \chi(j)s \chi_{p}(j)s \chi_{p}(j)s \chi_{p}(j)s \\ \chi_{p}(j) = \chi(j)s \chi_{p}(j)s \\ \chi_{p}(j) = \chi(j)s \chi_{p}(j)s \chi_{p}(j)s \\ \chi_{p}(j) = \chi(j)s \chi_{p}(j)s \\ \chi_{p}(j) = \chi_{p}(j)s \\ \chi$	Voltage, current Fundamental	X	1(i) for harmon	ic voltage and	current in the harmo	nic formula	
Active power $\frac{1}{M_{2}^{1/2}} \frac{1}{L} \frac{1}{(U(n \times 1(n)))} \frac{P(i)(i+1) = P(i)+P(i+1)}{P(i+1)} P(12S = P(1+P) = P(1+P) = P(1S) = P(1S)$	current						
Active power $\frac{1}{25[\frac{3}{2}]} \left \left(0 \times 1(0) \times 0 \times 1 0 \right) + \frac{1}{25[\frac{3}{2}]} \left(0 \times 1 0 \times 1$		P(i) =			P123=P1+P2	P123 = P	1+P2+P3
$\frac{ }{ $	Active power	141 5 = 0			P456=P4+P5	P456 = P	1+P5+P6
Apparent power $S(i) = U(i) \times I(i)$ $S(i)(i+1)$ $= S(i) + S(i+1)$ $S(i)(i+1) = S(i) + S(i+1)$ $\frac{S_1^2}{2}(S(i) + S(i+1))$ $S(i) + S(i+S,2+S,3)$ $S(i) + S(i+S,2+S,3)$ $S(i) = S(i+S,2+S,3)$ $S(i) + S(i) + S(i)$ Based true <i>interim term term term term term term term ter</i>		- When connecting 3V3A,	use line-to-line voltage f	or voltage U(i). (The sam	te formula is used for 3P3W2M an	d 3V3A.)	u3s = (U3s - U2s)/3
Apparent powerS(i) = U(i) × (i) = S(i) + S(i+1) $\frac{\sqrt{3}}{2} (S(i) + S(i+1))$ $\frac{\sqrt{3}}{2} (S(i+1))$ $\frac{\sqrt{3}}{2} (S(i+1))$ $\frac{\sqrt{3}}{2} (S(i+1))$ $S(i+2S + S(i+2S + S))$ $\frac{\sqrt{3}}{2} (S(i+2S + S))$ $\frac{\sqrt{3}}{2} (S(i+1))$ $\frac{\sqrt{3}}{2} (S(i+1))$ $\frac{\sqrt{3}}{2} (S(i+1))$ $\frac{\sqrt{3}}{2} (S(i+1))$ $S(i+2S + S(i+2S + S))$ $\frac{\sqrt{3}}{2} (S(i+2S + S))$ $\frac{\sqrt{3}}{2} (S(i+1))$ $\frac{\sqrt{3}}{2} (S(i+1))$ $\frac{\sqrt{3}}{2} (S(i+1))$ $S(i+2S + S(i+2S + S))$ $\frac{\sqrt{3}}{2} (S(i+1))$ $\frac{\sqrt{3}}{2} (S(i+1))$ $S(i+2S + S)$ $\frac{\sqrt{3}}{2} (S(i+1))$ $\frac{\sqrt{3}}{2} (S(i+1))$ Perecerving $S(i+1)$ $S(i+1)$ $S(i+1)$ $S(i+1)$ $S(i+1)$ $S(i+1)$ $S(i+1)$ $S(i+1)$ $S(i+1)$ Prover factor I I I I I I I I I I I <b< td=""><td></td><td>- The polarity sign for activ</td><td></td><td></td><td></td><td></td><td></td></b<>		- The polarity sign for activ					
Power factor Power factor P	Apparent	$S(i) = U(i) \times I(i)$					
When connecting 3P3WA are place solutions to U. When connecting 3P3WA are place solutions for without U. When selecting formula type 1 and type 3 $ \begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	power	Select rms / mn for 1/(7) an		2 (S(i)+S(i+1))	5456= <u>3</u> (54+55+56)	5450 = 54	+
Power factor for the power purpose for the formula type 1 and current stream purpose for the power purpose for the formula type 1 and current stream purpose for the power purpose for the formula type 1 and current stream purpose for the power purpose for the formula type 1 and type 3 inductive to the power purpose for the power purpose for the formula type 1 and type 3 inductive to the power purpose for the power purpose for the formula type 1 and type 3 inductive to the power purpose for the power purpose for the power purpose for the formula type 1 and type 3 inductive to the power purpose formula type 1 and type 3 inductive to the power purpose formula type 1 and type 3 inductive to the power purpose formula type 1 and type 3 inductive to the power purpose formula type 1 and type 3 inductive to the power purpose formula type 1 and type 3 inductive to the power purpose formula type 1 and type 3 inductive to the power purpose formula type 1 and type 3 inductive to the power purpose formula type 1 and type 3 inductive to the power purpose formula type 1 and type 3 inductive to the power purpose formula type 1 and type 3 inductive the power formula type 1 and type 3 inductive to the power power formula type 1 and the power power formula type 1 and the power power formula type 1 and the power power power formula type 1 and type and the power power power power power formula type 1 and the power power power power power formula type 1 and the power pow		When connecting 3P3W3M	and 3P4W, use phase	voltage for voltage U(i). r voltage U(i).			
Power factor Power factor P					ula type 1 and type 3	3	
Power factor Power factor P		Q(i) =	0(1)(1,1)	0(1) - 0(1-1)	Q123=Q1+Q2	Q123=Q1	+Q2+Q3
Prover factors and the second		$si(i)\sqrt{S(i)^2 - P(i)^2}$	Q(1)(1+1) =	Q(I)+Q(I+I)	Q456=Q4+Q5	Q456=Q4	+Q5+Q6
power $\Omega(t) = \int_{\sqrt{S(t)}} \Omega(t) + 1 = \int_{S$	Reactive				1		
Power factor Prover phase angle Power factor Prover phase angle Power factor Prover phase angle Power factor Prover phase Power factor Prover factor Prove factor Prover factor Prove factor				,			,
Power factor Prover phase Power factor Provide the selecting formula type 1 $\frac{ P_{12} P_{12$							
When selecting formula type 1 $\lambda(t) = Si(t) \begin{bmatrix} P(t) \\ S(t) \end{bmatrix}$ $\lambda(t)(t+1) = Si(t)(t+1) \begin{bmatrix} P(t) \\ S(t)(t+1) \end{bmatrix}$ $\lambda_{123} = Si_{123} \begin{bmatrix} P_{123} \\ S_{123} \end{bmatrix}$ $\lambda_{456} = Si_{456} \begin{bmatrix} P_{456} \\ S_{456} \end{bmatrix}$ When selecting formula type 2 $\lambda(t) = \begin{bmatrix} P(t) \\ S(t) \end{bmatrix}$ $\lambda(t)(t+1) = \begin{bmatrix} P(t) \\ S(t)(t+1) \end{bmatrix}$ $\lambda_{123} = \begin{bmatrix} P_{123} \\ S_{123} \end{bmatrix}$ $\lambda_{456} = \begin{bmatrix} P_{456} \\ S_{456} \end{bmatrix}$ When selecting formula type 3The provided type of the theory for formula type 1A type = $\begin{bmatrix} P(t) \\ S(t) \end{bmatrix}$ $\lambda(t)(t+1) = \begin{bmatrix} P(t) \\ S(t)(t+1) \end{bmatrix}$ $\lambda_{123} = \begin{bmatrix} P_{123} \\ S_{123} \end{bmatrix}$ $\lambda_{456} = \begin{bmatrix} P_{456} \\ S_{456} \end{bmatrix}$ The provide type of the theory for formula type 1The provide type of the theory for formula type 1The provide type of the theory for formula type 1The provide type of the theory for formula type 1The provide type of the theory for formula type 1The provide type of the theory for formula type 1The provide type of the theory for formula type 1The provide type of the theory for formula type 1The provide type of the type of the theory for formula type 1The provide type of the type of type of the type of the type of type of type of type of the type of the type of type of type of the t		and [-] indicates leading p - For polarity sign si(i), lea - When connecting 3P3W38	olarity (LEAD). d and lag for voltage war / and 3P4W. use phase vo	veform U(i)s and current	waveform I(i)s are acquired for ea	ch measurement char	nel (i).
Power factor $ \frac{\lambda_{(l)} = Si_{(l)} \left \frac{P_{(l)}}{S_{(l)}} \right \lambda_{(l)}(l+1) = Si_{(l)}(l+1) \left \frac{P_{(l)}(l+1)}{S_{(l)}(l+1)} \right \lambda_{123} = Si_{123} \left \frac{P_{123}}{S_{123}} \right \lambda_{456} = Si_{456} \left \frac{P_{456}}{S_{456}} \right \\ \frac{When selecting formula type 2}{\lambda_{(l)}(l+1)} \frac{\lambda_{(l)}(l+1) = \left \frac{P_{(l)}(l+1)}{S_{(l)}(l+1)} \right \lambda_{123} = \left \frac{P_{123}}{S_{123}} \right \lambda_{456} = \left \frac{P_{456}}{S_{456}} \right \\ \frac{\lambda_{(l)} = \frac{P_{(l)}}{S_{(l)}} \frac{\lambda_{(l)}(l+1) = \left \frac{P_{(l)}(l+1)}{S_{(l)}(l+1)} \right \lambda_{123} = \left \frac{P_{123}}{S_{123}} \right \lambda_{456} = \left \frac{P_{456}}{S_{456}} \right \\ \frac{\lambda_{(l)} = \frac{P_{(l)}}{S_{(l)}} \frac{\lambda_{(l)}(l+1) = \frac{P_{(l)}(l+1)}{S_{(l)}(l+1)} \frac{\lambda_{123}}{S_{(l)}(l+1)} \frac{P_{123}}{S_{123}} \frac{\lambda_{456}}{S_{123}} = \frac{P_{423}}{S_{456}} \\ \frac{\lambda_{l0} = \frac{P_{(l)}}{S_{(l)}} \frac{\lambda_{(l)}(l+1) = \frac{P_{(l)}(l+1)}{S_{(l)}(l+1)} \frac{\lambda_{123}}{S_{(l)}(l+1)} \frac{P_{123}}{S_{123}} \frac{\lambda_{456}}{S_{123}} = \frac{P_{426}}{S_{456}} \\ \frac{\lambda_{123}}{I_{123}} \frac{\lambda_{456}}{S_{456}} = \frac{P_{456}}{S_{456}} \\ \frac{\lambda_{12}}{I_{12}} \frac{\lambda_{12}}{I_{12}} \frac{\lambda_{456}}{I_{12}} = \frac{P_{123}}{I_{12}} \frac{\lambda_{456}}{I_{12}} = \frac{P_{123}}{I_{12}} \frac{\lambda_{456}}{I_{12}} \\ \frac{\lambda_{123}}{I_{12}} \frac{\lambda_{456}}{I_{12}} = \frac{P_{123}}{I_{12}} \frac{\lambda_{456}}{I_{12}} = \frac{P_{123}}{I_$		- There is no polarity sign			formula type 1		
Power factor Powe		$\lambda^{(i)} = Si_{(i)} \left \frac{P_{(i)}}{S_{(i)}} \right $			1	$\frac{3}{3}$ $\lambda_{456} = S$	1456 P456 S456
Power factor $ \begin{aligned} \frac{\partial_{i}(i) = \left \frac{P_{i}(j)}{S_{i}(i)}\right \qquad \partial_{i}(i+1) = \left \frac{P_{i}(j)(i+1)}{S_{i}(i+1)}\right \qquad \partial_{1}1_{23} = \left \frac{P_{i}1_{23}}{S_{i}1_{23}}\right , \ \partial_{4}5_{6} = \left \frac{P_{4}4_{5}6}{S_{4}5_{6}6}\right \\ \hline When selecting formula type 3 \\ \hline \frac{\partial_{i}(i) = \frac{P_{i}(i)}{S_{i}(i)} \qquad \partial_{i}(i+1) = \frac{P_{i}(j)(i+1)}{S_{i}(i+1)} \qquad \partial_{1}1_{23} = \frac{P_{i}1_{23}}{P_{i}1_{23}}, \ \partial_{4}5_{6} = \frac{P_{4}4_{5}6}{S_{4}5_{6}6} \end{aligned} $ $ \frac{\partial_{i}(i) = \frac{P_{i}(i)}{S_{i}(i)} \qquad \partial_{i}(i+1) = \frac{P_{i}(j)(i+1)}{S_{i}(i+1)} \qquad \partial_{1}1_{23} = \frac{P_{i}1_{23}}{P_{i}1_{23}}, \ \partial_{4}5_{6} = \frac{P_{4}4_{5}6}{S_{4}5_{6}6} \end{aligned} $ $ \frac{\partial_{i}(i) = \frac{P_{i}(i)}{S_{i}(i)} \qquad \partial_{i}(i+1) = \frac{P_{i}(j)(i+1)}{S_{i}(i+1)} \qquad \partial_{1}1_{23} = \frac{P_{i}1_{23}}{P_{i}1_{23}}, \ \partial_{4}5_{6} = \frac{P_{4}4_{5}6}{S_{4}5_{6}6} \end{aligned} $ $ \frac{\partial_{i}(i) = \frac{P_{i}(i)}{P_{i}(i)} \qquad \partial_{i}(i+1) = \frac{P_{i}(i)(i+1)}{S_{i}(i+1)} \qquad \partial_{i}(i+1) = \frac{P_{i}(i+1)}{P_{i}1_{23}} \qquad \partial_{i}(i+1) = \frac{P_{i}1_{23}}{P_{i}1_{23}}, \ \partial_{4}5_{6} = \frac{P_{4}4_{5}6}{S_{4}5_{6}6} \cos^{-1}\partial_{4}\delta_{6}\delta} $ Power phase angle $ \frac{\Phi_{i}(i) = Cos^{-1} \lambda_{i}(i) }{\Phi_{i}(i+1) = S_{i}(i)(i+1)Cos^{-1} \lambda_{i}(i+1) } \qquad \Phi_{1}2_{3} = Cos^{-1} \lambda_{1}2_{3} , \ \Phi_{4}5_{6} = Cos^{-1} \lambda_{4}5_{6}\delta} \\ \hline \qquad When selecting formula type 3 $ $ \frac{\Phi_{i}(i) = Cos^{-1} \lambda_{i}(i) }{\Phi_{i}(i+1) = Cos^{-1} \lambda_{i}(i+1) } \qquad \Phi_{1}2_{3} = Cos^{-1} \lambda_{1}2_{3} , \ \Phi_{4}5_{6} = Cos^{-1} \lambda_{4}5_{6}\delta} \\ \hline \qquad When selecting tormula type 3 $ $ \frac{\Phi_{i}(i) = Cos^{-1} \lambda_{i}(i) }{\Phi_{i}(i+1) = Cos^{-1} \lambda_{i}(i+1) } \qquad \Phi_{1}2_{3} = Cos^{-1} \lambda_{1}2_{3} , \ \Phi_{4}5_{6} = Cos^{-1} \lambda_{4}5_{6}\delta} \\ \hline \qquad + P_{0} p_{i}(i) = P_{0}(i) = P_{$		· · ·	· · · · · ·		formula type 2		
Power phase angle and the source of the sou	Power factor	$\lambda^{(i)} = \frac{P_{(i)}}{S_{(i)}}$, ,,	$\left \frac{23}{23} \right $, $\lambda_{456} = \left \frac{F}{5} \right $	456
$\frac{\lambda_{(i)} = \frac{P_{(i)}}{S_{(i)}}}{\lambda_{(i)}} \frac{\lambda_{(i)(i+1)} = \frac{P_{(i)(i+1)}}{S_{(i)(i+1)}}}{\lambda_{(i)(i+1)}} \frac{\lambda_{123} = \frac{P_{123}}{S_{123}}}{\lambda_{123}} \frac{\lambda_{456}}{\lambda_{456}} = \frac{P_{456}}{S_{456}}$ $-1 \text{ the polarity sign is the power flacter \label{eq:starting and lagging polarity, [Notes] indicates leading go polarity, [NA0], and [1] indicates leading polarity, [NA0], and [2] indicates leading polarity, [2], indicates leading polarity,$			\	When selecting	formula type 3		
Power phase angle The power phase angle the phase table λ for formula type 1 indicates leading and the power phase angle the phase table λ for formula type 1 indicates leading and the phase table λ for formula type 1 indicates leading and the phase table λ for formula type 1 indicates leading and the phase table λ for formula type 1 indicates leading and the phase table λ for formula type 1 indicates leading and the phase table λ for formula type 1 indicates leading and the phase table λ for formula type 1 indicates leading and the phase table λ in a status are equivaled for the status indicates leading and the phase table λ indica		3(1)	λ (i)(i+1)	$= \overline{S(i)(i+1)}$	$\Lambda_{123} = \frac{1}{S_{12}}$	$\frac{1}{23}$, $7456 = \frac{1}{5}$	456
Power phase angle the set of the		indicates leading polarity	wer factor λ for formula (LEAD).	type 1 indicates leading	and lagging polarity, [None] indica	ates lagging polarity (L	AG), and [-]
Power phase angle when selecting formula type 1 $ \frac{\psi_{(i)}=s(\phi_{(COS^{-1} \lambda_{i}) } \psi_{(i)}(i+1)=s(i)(i+1)COS^{-1} \lambda_{i}(i,1) } \psi_{123}=s(i_{123}COS^{-1} \lambda_{123} , \phi_{456}=s(i_{456}COS^{-1} \lambda_{456}) \\ \hline \\ $		 For polarity sign si(i), lead and lag for voltage waveform U(i)s and current waveform I(i)s are acquired for each measurement channel (i). si12, si34, and si123 are acquired from the signs for Q12, Q34, and Q123. 					
Power phase angle $ \begin{aligned} \hline & \left(\frac{1}{2} \left \frac{1}{2} \left \frac{1}{2} \right \frac{1}{2} \left \frac{1}{2} \left \frac{1}{2} \left \frac{1}{2} \right \left \frac{1}{2} \left \frac{1}{2} \left \frac{1}{2} \right \left \frac{1}{2} \left \frac{1}{2} \right \left \frac{1}{2} \right \left \frac{1}{2} \left \frac{1}{2} \right \left \frac{1}{2} \left \frac{1}{2} \right \left \frac{1}{2} \right \left \frac{1}{2} \left \frac{1}{2} \right \left \frac{1}{2} \right \left \frac{1}{2} \left \frac{1}{2} \right \frac{1}{2} \right \left \frac{1}{2} \right \left \frac{1}{2} \right 1$		- For formula type 3, the p	planty sign for active po		formula type 1		
Power phase angle when selecting formula type 2 $ \frac{\psi_{(i)} = \cos^{-1} $		$\phi_{(i)=si(i)cos^{-1}}\lambda_{(i)}$				α, φ ₄₅₆ =si ₄₅₆	COS-1 2456
Power phase angle $ \frac{\phi_{(i)} = \cos^{-1} \lambda_{(i)} $							
angle When selecting formula type 3 $\frac{\phi_{(j)} = \cos^{-1} \lambda_{(j)} \phi_{(j)(+1)} = \cos^{-1} \lambda_{(j)(+1)} \phi_{123} = \cos^{-1} \lambda_{123} , \phi_{456} = \cos^{-1} \lambda_{456} \\ \hline \phi_{(j)} = \cos^{-1} \lambda_{(j)} \phi_{(j)(+1)} = \cos^{-1} \lambda_{(j)(+1)} \phi_{123} = \cos^{-1} \lambda_{123} , \phi_{456} = \cos^{-1} \lambda_{456} \\ \hline e^{-1} For jondity jegs a (j), lead and lag for voltage asset(multiple and current waveform (i)) are acquired for each measurement channel (j), arit2, add, and 127 are acquired from the sign for a darker power P1 is used. - For formula type 3, the polarity tiges to active power P1 is used. - Vitine calculating formula type 1 and type 2, excluding the static power P3 is used when P < 0. (Xpk+(j) - Xpk-(j)) × 100$	Power phase angle	$\phi_{(i)} = \cos^{-1} \lambda_{(i)} $				$\phi_{456} = c_0$	DS ⁻¹ λ456
- For formula type 1, the polarity sign air indicates leading and lagging polarity (Nore) indicates leading polarity (LSUC - For polarity sign air), lead and lag for voltage waveform (I)(a and current waveform (I)(a and excert waveform (I)) and a cardinate variation are acquired for each measurement channel (I). air2, ad4, and air22 are acquired form the sign bir active power P is used. - For formula type 3, the polarity sign for active power P is used. - Vitten celocateding formula type 1 and type2, co-r14X(I) is used when P < 0. - (X/pk+(I) - X/pk-(I)) × 100			· · · · · ·	When selecting	g formula type 3		
$\frac{1}{100} - \frac{1}{100} - \frac{1}$							
When calculating formula type 1 and type2, cos-114/0/1 is used when P ≥ 0. 1180°-cos-114/0 is used when P < 0. Voltage and current ripple <u>(Xpk+(i) - Xpk-(i))</u> × 100		 For polarity sign si(i), lea and si123 are acquired fro - For formula type 3, the polarity 	d and lag for voltage way om the signs for Q12, Q3 plarity sign for active por	veform U(i)s and current 4, and Q123. wer P is used.	waveform <i>l(i)s</i> are acquired for ea	ch measurement char	ding polarity (LEAD nel (i). si12, si34,
		- When calculating formula	a type 1 and type2, cos-	$(X_{pk+(i)} = \lambda)$	(pk-(i)) × 100).	

X: Voltage U or Current I, (I): Measurement channel, M: Number of samples during synchronized timing period, s: Sample point number

Motor analysis formulae

Measurement parameters	Setting	Formula			
Voltage	Analog DC	$\frac{1}{M} \sum_{s=0}^{M-1} A_s$ <i>M</i> : Number of samples during synchronized timing period; <i>s</i> : Sample point number			
Pulse frequency	Pulse	Pulse frequency			
Torque	Analog DC	$\frac{1}{M} \sum_{s=a}^{M} As \times scaling setting$ M: Number of samples during synchronized timing period; s: Sample point number			
	Frequency	(Measurement frequency - fc setting) × rated torque value fd setting			
	Analog DC	$\frac{1}{M}\sum_{s=a}^{M}As \times scaling setting$ M: Number of samples during synchronized timing period; s: Sample point number			
Pulse		$\frac{Si}{Fulse frequency} \frac{Si}{Fulse count setting}$ The polarity sign <i>si</i> is acquired based on the A-phase pulse rising/falling edge and the B-phase pulse logic level (high/low) when direction of rotation detection is enabled in single mode.			
Motor power		$\frac{Torque \times \frac{2 \times 77 \times RPM}{60} \times unit coefficient}{The unit coefficient is N·m, 1/1000 if mN·m, and 1000 if kN·m.}$			
Slip		$\frac{2 \times 60 \times \text{input frequency} - \text{ RPM} \times \text{pole number setting}}{2 \times 60 \times \text{input frequency}}$ The input frequency is selected from f1 to f6.			

General Specifications

Operating environment	Indoors at an elevation of up to 2000 m in a Pollution Level 2 environment
Storage temperature and humidity	-10°C to 50°C, 80% RH or less (no condensation)
Operating temperature and humidity	0°C to 40°C, 80% RH or less (no condensation)
Dielectric strength	50 Hz/60 Hz 5.4 kV rms AC for 1 min. (sensed current of 1 mA) Between voltage input terminals and instrument enclosure, and between current sensor input terminals and interfaces 1 kV rms AC for 1 min. (sensed current of 3 mA) Between motor input terminals (Ch. A, Ch. B, Ch. C, and Ch. D) and the instrument enclosure
Standards	Safety EN61010 EMC EN61326 Class A
Rated supply voltage	100 V AC to 240 V AC, 50 Hz/ 60 Hz
Maximum rated power	200 VA
External dimensions	Approx. 430 mm (16.93 in)W × 177 mm (6.97 in)H × 450 mm (17.72 in)D (excluding protruding parts)
Mass	Approx. 14 kg (49.4 oz) (PW6001-16)
Backup battery life	Approx. 10 years (reference value at 23°C) (lithium battery that stores time and setting conditions)
Product warranty period	1 year
Guaranteed accuracy period	6 months (1-year accuracy = 6-month accuracy × 1.5)
Post-adjustment accuracy guaranteed period	6 months
Accuracy guarantee conditions	Accuracy guarantee temperature and humidity range: 23°C \pm 3°C, 80% RH or less Warm-up time: 30 min. or more
Accessories	Instruction manual x 1, power cord x 1, D-sub 25-pin connector x 1 (PW6001-1x only)

Other functions

Clock function	Auto-calendar, automatic leap year detection, 24-hour clock
Actual time accuracy	When the instrument is on, ±100 ppm; when the instrument is off, within ±3 sec./day (25°C)
Sensor identification	Current sensors connected to Probe1 are automatically detected.
Zero-adjustment function	After the AC/DC current sensor's DEMAG signal is sent, zero-correction of the voltage and current input offsets is performed.
Touch screen correction	Position calibration is performed for the touch screen.
Key lock	While the key lock is engaged, the key lock icon is displayed on the screen.

Rack mount support

Full rack size ideal for incorporation into test benches and product inspection lines

Current sensors

High-accuracy sensors: direct connection type (connect to Probe1 input terminal)

The newly developed DCCT method provides world-leading measurement bands and accuracy at a 50 A rating. Delivering a directcoupled type current testing tool that brings out the PW6001 POWER ANALYZER's maximum potential. (A 5 A-rated version is also available. Contact us for more information.)

	AC/DC CURRENT BOX PW9100-03	AC/DC CURRENT BOX PW9100-04	
External Appearance	sin sin sin		
Number of input channels	3ch 4 ch		
Rated primary current	50 A A	AC/DC	
Frequency band	DC to 3.5 N	/Hz (-3 dB)	
Measurement terminals	Terminal block (with sa	fety cover), M6 screws	
Basic accuracy	±0.02% rdg. ±0.005% f.s. (amplitude), ±0.1 deg (phase) (At 45 ≤ f ≤ 65 Hz) ±0.02% rdg. ±0.007% f.s. (amplitude) (At DC)		
Frequency response (Amplitude)	to 45 Hz: ±0.1% rdg. ±0.02% f.s. to 1 kHz: ±0.1% rdg. ±0.01% f.s. to 50 kHz: ±1% rdg. ±0.02% f.s. to 100 kHz: ±2% rdg. ±0.05% f.s. to 1 MHz: ±10% rdg. ±0.05% f.s. 3.5 MHz: -3 dB Typical		
Input resistance	1.5 mΩ or less (50 Hz/60 Hz)		
Operating temperature range	Temperature: 0°C to 40°C (32°F to 104°F), Humidity: 80% R.H. or less (no condensation)		
Effects of common-mode voltage (CMRR)	50 Hz/60 Hz: 120 dB or greater, 100 kHz: 120 dB or greater (Effect on output voltage/common-mode voltage)		
Maximum voltage to ground	1000 V (measurement category II), 600 V (measurement category III), anticipated transient overvoltage: 6000 V		
Dimensions	430 mm (16.93 in) W × 88 mm (3.46 in) H × 260 mm (10.24 in) D, Cable length: 0.8 m (2.62 ft)		
Mass	3.7 kg (130.5 oz)	4.3 kg (151.7 oz)	
Derating Characteristics		CUTACY/10(0) CUTACY/10(0) 1 k 10 k 100 k 1M 10M Frequency [H2]	

Wiring connection example 1 – Existing direct-input connection method For more reliable wideband high-accuracy measurements.

Use as an alternative to existing directinput power meters. Use two PW9100-03 devices (the 3 ch models) for 6-channel measurements.

Wiring connection example 2 – Introducing a new and innovative measuring method

Shorten the wiring for current measurement by installing the PW9100 close to the measurement target. This will also keep the effects of wiring resistance, capacity coupling and other objective factors on the measured values to a minimum.

*Requires CT9902 EXTENSION CABLE

High-accuracy sensors: pull-through type (connect to Probe1 input terminal)

Model	AC/DC CURRENT SENSOR CT6862-05	AC/DC CURRENT SENSOR CT6863-05	AC/DC CURRENT SENSOR 9709-05	AC/DC CURRENT SENSOR CT6865-05
Appearance				
Rated primary current	50 A AC/DC	200 A AC/DC	500 A AC/DC	1000 A AC/DC
Frequency band	DC to 1 MHz	DC to 500 kHz	DC to 100 kHz	DC to 20 kHz
Diameter of measurable conductors	Max.φ 24mm (0.94")	Max.φ 24 mm (0.94")	Max.φ 36 mm (1.42*)	Max.φ 36 mm (1.42")
Basic accuracy	±0.05 % rdg.±0.01 % f.s. (amplitude) ±0.2° (phase, not defined for DC) (At DC and 16 Hz to 400 Hz)	±0.05 % rdg.±0.01 % f.s. (amplitude) ±0.2° (phase, not defined for DC) (At DC and 16 Hz to 400 Hz)	±0.05 % rdg.±0.01 % f.s. (amplitude) ±0.2° (phase, not defined for DC) (At DC and 45 Hz to 66 Hz)	±0.05 % rdg.±0.01 % f.s. (amplitude) ±0.2° (phase, not defined for DC) (At DC and 16 Hz to 66 Hz)
Frequency characteristics (Amplitude)	to 16 Hz: ±0.1% rdg. ±0.02% f.s. 400Hz to 1kHz: ±0.2% rdg. ±0.02% f.s. to 50 kHz: ±1.0% rdg. ±0.02% f.s. to 100 kHz: ±2.0% rdg. ±0.05% f.s. to 1 MHz: ±30% rdg. ±0.05% f.s.	to 16 Hz: ±0.1% rdg.±0.02% f.s. 400Hz to 1kHz: ±0.2% rdg.±0.02% f.s. to 10 kHz: ±1.0% rdg.±0.02% f.s. to 100 kHz: ±5.0% rdg.±0.05% f.s. to 500 kHz: ±30% rdg.±0.05% f.s.	to 45 Hz: ±0.2% rdg. ±0.02% f.s. 66 Hz to 500 Hz: ±0.2% rdg. ±0.02% f.s. to 5 kHz: ±0.5% rdg. ±0.02% f.s. to 10 kHz: ±5.0% rdg. ±0.10% f.s. to 100 kHz: ±30% rdg. ±0.10% f.s.	to 16 Hz: ±0.1% rdg. ±0.02% f.s. 66 Hz to 100 Hz: ±0.5% rdg. ±0.02% f.s. to 500 Hz: ±1.0% rdg. ±0.02% f.s. to 5 kHz: ±5.0% rdg. ±0.05% f.s. to 20 kHz: ±30% rdg. ±0.1% f.s.
Operating Temperature	-30°C to 85°C (-22°F to 185°F)	-30°C to 85°C (-22°F to 185°F)	0°C to 50°C (32°F to 122°F)	-30°C to 85°C (-22°F to 185°F)
Effect of conductor position	Within ±0.01% rdg. (DC to 100 Hz)	Within ±0.01% rdg. (DC to 100 Hz)	Within ±0.05% rdg. (DC 100 A)	Within ±0.05% rdg. (AC1000 A,50/60 Hz)
Effect of external magnetic fields	10 mA equivalent or lower (400 A/m, 60 Hz and DC)	50 mA equivalent or lower (400 A/m, 60 Hz and DC)	50 mA equivalent or lower (400 A/m, 60 Hz and DC)	200 mA equivalent or lower (400 A/m, 60 Hz and DC)
Maximum rated voltage to earth	CAT III 1000 V rms	CAT III 1000 V rms	CAT III 1000 V rms	CAT III 1000 V rms
Dimensions	70W (2.76") × 100H (3.94") × 53D (2.09") mm Cable length: 3 m (9.84 ft)	70W (2.76") × 100H (3.94") × 53D (2.09") mm Cable length: 3 m (9.84 ft)	160W (6.30") × 112H (4.41") × 50D (1.97") mm Cable length: 3 m (9.84 ft)	160W (6.30") × 112H (4.41") × 50D (1.97") mm Cable length: 3 m (9.84 ft)
Mass	340 g (12.0 oz.)	350 g (12.3 oz.)	850 g (30.0 oz.)	980 g (35.3 oz)
Derating properties	3000 000 000 000 000 000 000 000	Weighting the second se	14. 500 100 100 100 100 100 100 100	M 1200 1000 000 000 000 000 000 000

Custom cable lengths also available. Please inquire with your Hioki distributor.

High-accuracy sensors: clamp type (connect to Probe1 input terminal)

Model	AC/DC CURRENT PROBE CT6841-05	AC/DC CURRENT PROBE CT6843-05	AC/DC CURRENT PROBE CT6844-05	AC/DC CURRENT PROBE CT6845-05	AC/DC CURRENT PROBE CT6846-05
Appearance	2				
Rated primary current	20 A AC/DC	200 A AC/DC	500 A AC/DC	500 A AC/DC	1,000 A AC/DC
Frequency band	DC to 1 MHz	DC to 500 kHz	DC to 200 kHz	DC to 100 kHz	DC to 20 kHz
Diameter of measurable conductors	Max.φ 20 mm (0.79") (insulated conductor)	Max.φ 20 mm (0.79") (insulated conductor)	Max.φ 20 mm (0.79") (insulated conductor)	Max.φ 50 mm (1.97") (insulated conductor)	Max.φ 50 mm (1.97") (insulated conductor)
Basic accuracy	±0.3% rdg. ±0.01% f.s. (amplitude) ±0.1° (phase) (At DC < f ≤ 100 Hz) ±0.3% rdg. ±0.05% f.s. (amplitude) (At DC)	±0.1° (phase) (At DC < f ≤ 100 Hz)	±0.1° (phase) (At DC < f ≤ 100 Hz)	±0.1° (phase) (At DC < f ≤ 100 Hz)	±0.3% rdg. ±0.01% f.s. (amplitude) ±0.1° (phase) (At DC < f ≤ 100 Hz) ±0.3% rdg. ±0.02% f.s. (amplitude) (At DC)
Frequency characteristics (Amplitude)	to 500 Hz: ±0.3% rdg.±0.02% f.s. to 1 kHz: ±0.5% rdg.±0.02% f.s. to 10 kHz: ±1.5% rdg.±0.02% f.s. to 100 kHz: ±5.0% rdg.±0.05% f.s. to 1 MHz: ±30% rdg.±0.05% f.s.	to 500 Hz: ±0.3% rdg. ±0.02% f.s. to 1 kHz: ±0.5% rdg. ±0.02% f.s. to 10 kHz: ±1.5% rdg. ±0.02% f.s. to 50 kHz: ±5.0% rdg. ±0.02% f.s.	to 500 Hz: ±0.3% rdg. ±0.02% f.s. to 1 kHz: ±0.5% rdg. ±0.02% f.s. to 10 kHz: ±1.5% rdg. ±0.02% f.s. to 50 kHz: ±5.0% rdg. ±0.02% f.s. to 50 kHz: ±5.0% rdg. ±0.02% f.s. to 20 kHz: ±30% rdg. ±0.05% f.s.	to 500 Hz: ±0.3% rdg.±0.02% f.s. to 1 kHz: ±0.5% rdg.±0.02% f.s. to 10 kHz: ±1.5% rdg.±0.02% f.s. to 20 kHz: ±5.0% rdg.±0.02% f.s. to 100 kHz: ±30% rdg.±0.05% f.s.	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Operating Temperature	-40°C to 85°C (-40°F to 185°F)	-40°C to 85°C (-40°F to 185°F)	-40°C to 85°C (-40°F to 185°F)	-40°C to 85°C (-40°F to 185°F)	-40°C to 85°C (-40°F to 185°F)
Effect of conductor position	Within ±0.1% rdg. (DC to 100 Hz)	Within ±0.1% rdg. (DC to 100 Hz)	Within ±0.1% rdg. (DC to 100 Hz)	Within ±0.2% rdg. (DC to 100 Hz)	Within ±0.2% rdg. (DC to 100 Hz)
Effect of external magnetic fields	50 mA equivalent or lower (400 A/m, 60 Hz and DC)	50 mA equivalent or lower (400 A/m, 60 Hz and DC)	100 mA equivalent or lower (400 A/m, 60 Hz and DC)	150 mA equivalent or lower (400 A/m, 60 Hz and DC)	150 mA equivalent or lower (400 A/m, 60 Hz and DC)
Dimensions	153W (6.02") × 67H (2.64") × 25D (0.98") mm Cable length: 3 m (9.84 ft)	153W (6.02") × 67H (2.64") × 25D (0.98") mm Cable length: 3 m (9.84 ft)	153 (6.02") W × 67 (2.64") H × 25 (0.98") D mm Cable length: 3 m (9.84 ft)	238 (9.37") W × 116 (4.57") H × 35 (1.38") D mm Cable length: 3 m (9.84 ft)	238 (9.37") W × 116 (4.57") H × 35 (1.38") D mm Cable length: 3 m (9.84 ft)
Mass	350 g (12.3 oz)	370 g (13.1 oz)	400 g (14.1 oz)	860 g (30.3 oz)	990 g (34.9)
Derating properties	To: Ambient temperature 40°C < To: 80°C 40°C < To: 80°C	Ta: Ambient temperature 400°C ta: 680°C 40°C	20	Tr. Ambient temperature	

Custom cable lengths also available. Please inquire with your Hioki distributor.

Wide-band probes (connect to Probe2 input terminal)

Model	CLAMP ON PROBE 3273-50	CLAMP ON PROBE 3274	CLAMP ON PROBE 3275	CLAMP ON PROBE 3276
Appearance	00		20	00
Rated primary current	30 A AC/DC	150 A AC/DC	500 A AC/DC	30 A AC/DC
Frequency band	DC to 50 MHz (-3 dB)	DC to 10 MHz (-3 dB)	DC to 2 MHz (-3 dB)	DC to 100 MHz (-3 dB)
Diameter of measurable conductors	Max.ø 5 mm (0.20") (insulated conductors)	Max.φ 20 mm (0.79") (insulated conductors)	Max.φ 20 mm (0.79") (insulated conductors)	Max.φ 5 mm (0.20") (insulated conductors)
Basic accuracy	0 to 30 A rms ±1.0% rdg. ±1 mV 30 A rms to 50 A peak ±2.0% rdg. (At DC and 45 to 66 Hz)	0 to 150 A rms ±1.0% rdg. ±1 mV 150 A rms to 300 A peak ±2.0% rdg. (At DC and 45 to 66 Hz)	0 to 500 A rms ±1.0% rdg. ±5 mV 500 A rms to 700 A peak ±2.0% rdg. (At DC and 45 to 66 Hz)	0 to 30 A rms ±1.0% rdg. ±1 mV 30 A rms to 50 A peak ±2.0% rdg. (At DC and 45 to 66 Hz)
Operating temperature	0°C to 40°C (32°F to 104°F)	0°C to 40°C (32°F to 104°F)	0°C to 40°C (32°F to 104°F)	0°C to 40°C (32°F to 104°F)
Effect of external magnetic fields	20 mA equivalent or lower (400 A/m, 60 Hz and DC)	150 mA equivalent or lower (400 A/m, 60 Hz and DC)	400 mA equivalent or lower (400 A/m, 60 Hz and DC)	400 mA equivalent or lower (400 A/m, 60 Hz and DC)
Dimensions	175W (6.89") × 18H(0.71") × 40D (1.57") mm Cable length: 1.5 m	176W (6.93") × 69H (2.72") × 27D(1.06") mm Cable length: 2 m	176W (6.93") × 69H (2.72") × 27D(1.06") mm Cable length: 2 m	175W (6.89") × 18H(0.71") × 40D (1.57") mm Cable length: 1.5 m
Mass	230 g (8.1 oz)	500 g (17.6 oz)	520 g (18.3 oz)	240 g (8.5 oz)
Derating properties	10 100 100 100 100 100 100 100 100 100	K) 150 00 00 00 100 100 100 100 100 100 100	Wyward in the second se	M 30 10 10 10 10 10 10 10 10 10 1

Model	CURRENT PROBE CT6700	CURRENT PROBE CT6701	
Appearance	00	00	
Rated primary current	5 Arms AC/DC	5 Arms AC/DC	
Frequency band	DC to 50 MHz (-3 dB)	DC to 120 MHz (-3 dB)	
Diameter of measurable conductors	Max.φ 5 mm (0.20") (insulated conductors)	Max.φ 5 mm (0.20") (insulated conductors)	
Basic accuracy	typical ±1.0% rdg. ±1 mV ±3.0% rdg. ±1 mV (At DC and 45 to 66 Hz)	typical ±1.0% rdg. ±1 mV ±3.0% rdg. ±1 mV (At DC and 45 to 66 Hz)	
Operating temperature	0°C to 40°C (32°F to 104°F)	0°C to 40°C (32°F to 104°F)	
Effects of external magnetic fields	20 mA equivalent or lower (400 A/m, 60 Hz and DC)	5 mA equivalent or lower (400 A/m, 60 Hz and DC)	
Dimensions	155W (6.10") × 18H(0.71") × 26D (1.02") mm Cable length: 1.5 m	155W (6.10") × 18H(0.71") × 26D (1.02") mm Cable length: 1.5 m	
Mass	250 g (8.8 oz)	250 g (8.8 oz)	
Derating properties	(Y) Jauro poly 10 10 10 10 10 10 10 10 10 10	(7) June of the second	

Sensor switching method

High accuracy sensor terminal: Slide the cover to the left. When connecting CT6862-05, CT6863-05, 9709-05, CT6865-05,

CT6841-05, CT6843-05, CT6844-05, CT6845-05, CT6846-05, PW9100-03, PW9100-04

Wideband probe terminal: Slide the cover to the right. When connecting 3273-50, 3274, 3275, 3276, CT6700 or CT6701

Model: POWER ANALYZER PW6001Lineup

Model No. (Order Code)	Number of built-in channels	Motor Analysis & D/A Output
PW6001-01	1ch	—
PW6001-02	2ch	—
PW6001-03	3ch	—
PW6001-04	4ch	—
PW6001-05	5ch	—
PW6001-06	6ch	—
PW6001-11	1ch	✓
PW6001-12	2ch	1
PW6001-13	3ch	1
PW6001-14	4ch	1
PW6001-15	5ch	1
PW6001-16	6ch	✓

Accessories: Instruction manual x 1, power cord x 1, D-sub 25-pin connector (PW6001-11 to -16 only) x 1

- The optional voltage cord and current sensor are required for taking measurements

Specify the number of built-in channels and inclusion of Motor Analysis & D/A Output upon order for factory

installation. These options cannot be changed or added at a later date.

Current measurement options

Model	Model No. (Order Code)
AC/DC CURRENT SENSOR (50A)	CT6862-05
AC/DC CURRENT SENSOR (200A)	CT6863-05
AC/DC CURRENT SENSOR (500A)	9709-05
AC/DC CURRENT SENSOR (1000A)	CT6865-05
AC/DC CURRENT PROBE (20A)	CT6841-05
AC/DC CURRENT PROBE (200A)	CT6843-05
AC/DC CURRENT PROBE (500 A, ¢20 mm)	CT6844-05
AC/DC CURRENT PROBE (500 A, φ50 mm)	CT6845-05
AC/DC CURRENT PROBE (1000 A)	CT6846-05
AC/DC CURRENT BOX (50 A, 3 ch)	PW9100-03
AC/DC CURRENT BOX (50 A, 4 ch)	PW9100-04

Voltage measurement options

VOLTAGE CORD L9438-50

1000 V specifications. Black/ Red, 3 m (9.84 ft) length, Alligator clip x2

Connection options

CONNECTION CORD L9217

For motor signal input, Cord has insulated BNC connectors at both ends, 1.6 m (5.25 ft) length

GP-IB CONNECTOR CABLE 9151-02

adapter, 5 m (16.41 ft) length

For external control interface, 9 pin -9 pin straight, 1.5 m (4.92 ft) length

cross, 1.8m (5.91 ft) length

HIOKI (Shanghai) SALES & TRADING CO., LTD. TEL +86-21-63910090 FAX +86-21-63910360

http://www.hioki.cn / E-mail: info@hioki.com.cn

TEL +82-2-2183-8847 FAX +82-2-2183-3360 E-mail: info-kr@hioki.co.jp

HIOKI SINGAPORE PTE. LTD. TEL +65-6634-7677 FAX +65-6634-7477 E-mail: info-sg@hioki.com.sg

HIOKI KOREA CO., LTD.

For synchronized control, 50/125 µm wavelength multimode fiber, 10 m (32.81 ft) length

OPTICAL CONNECTION CABLE

Note: Company names and Product names appearing in this catalog are trademarks or registered trademarks of various companies. DISTRIBUTED BY

PW6001-16 (with 6 channels and Motor Analysis & D/A Output

Model	Model No. (Order Code)
CLAMP ON PROBE (30A)	3273-50
CLAMP ON PROBE (150A)	3274
CLAMP ON PROBE (500A)	3275
CLAMP ON PROBE (30A)	3276
CURRENT PROBE (5A)	CT6700
CURRENT PROBE (5A)	CT6701

CONVERSION CABLE CT9900

HIOKI PL23 (10 pin) to HIOKI ME15W (12 pin) connector

For use with CT6862, CT6863, 9709, CT6865, CT6841, CT6843. When using a sensor without "-05" in the model name, Conversion Cable CT9900 must be used to make the connection.

GRABBER CLIP 9243

Attaches to the tip of the banana plug cable, Red/ Black: 1 each, 196 mm (7.72 in) length, CAT III 1000 V

Other

The following made-to-order items are also available. Please contact your Hioki distributor or subsidiary for more information.

- Carrying case (hard trunk, with casters)
- D/A output cable, D-sub 25-pin-BNC (male), 20 ch conversion
- Bluetooth® serial converter adapter cable 1 m (3.28 ft)
- Rackmount fittings (EIA, JIS)
- Optical connection cable, Max. 500 m (1640.55 ft) length
- PW9100 5 A rating version
- 2000A pull-through type sensor

HIOKI E.E. CORPORATION

HEADQUARTERS

B1 Koizumi, Ueda, Nagano, 386-1192, Japan TEL +81-268-28-0562 FAX +81-268-28-0568 http://www.hioki.com / E-mail: os-com@hioki.co.jp

HIOKI USA CORPORATION

TEL +1-609-409-9109 FAX +1-609-409-9108 http://www.hiokiusa.com / E-mail: hioki@hiokiusa.com

All information correct as of Aug. 22, 2016. All specifications are subject to change without notice.

PW6001E6-68E Printed in Japan

VOLTAGE CORD L1000

