Tektronix[®]

Arbitrary Waveform Generators AWG5200 Series Datasheet

The AWG5200 Series arbitrary waveform generator (AWG) leads the way in signal generation by enabling bleeding-edge innovation for engineers and researchers. The AWG5200 Series of AWGs delivers unparalleled signal fidelity coupled with class-leading sample rate and memory depth, giving you the industry's best signal stimulus solution for complex RF baseband signal generation and precision experimental applications. With up to 5 GS/s sample rate (10 GS/s with interpolation) and 16-bit vertical resolution, the AWG5200 Series offers easy generation of complex signals as well as accurate playback of existing captured signals.

Key performance specifications

- Sample rates up to 10 GS/s (with 2x interpolation)
- 2, 4, and 8 channel configurations
- -70 dBc spurious free dynamic range
- 16 bits vertical resolution
- 2 GSample waveform memory per channel

Key features

- · Complete solution for complex RF signal generation in a single box
 - Direct generation of signals with carriers up to 4 GHz, removing the need for external RF conversion
- Simulate real-world analog effects on high speed digital data streams
- Generate high precision RF signals
 - Spurious Free Dynamic Range performance better than -70 dBc
- Create long complex waveforms without compromising bandwidth
 - Up to 2 GSamples of Waveform Memory plays 400 ms of data at 5 GS/s and 800 ms of data at 2.5 GS/s
- Synchronize multiple units to achieve a multi-channel high speed AWG system
- Fully operational without external PC
 - Built-in display and buttons make it possible to quickly select, edit, play waveforms and trigger on events directly from the AWG front panel

- Simulate real-world environments by playing back captured signals
 - Waveforms captured with Oscilloscopes or Real-Time Spectrum Analyzers can be played back, edited or re-sampled on the AWG
- · Smooth transition from simulation to the real-world testing environment
 - Waveform vectors imported from third-party tools such as MATLAB

Applications

- RF/MW waveform generation for communications and defense electronics testing and development
 - Output RF signals directly up to 4 GHz
- · Leading edge research in electronics, physics & chemistry
 - High speed, low jitter signal source generates uniquely specified analog signals, fast pulses, data streams and clocks

Seamless transition from simulation to generation

If a waveform can be defined or captured, then the AWG5200 can reproduce this signal. The creation of the waveform can happen in many ways. An extensive and growing library of waveform generation plugins which are optimized to work specifically with the Tektronix AWG family, provide specific waveform creation capabilities, while 3rd party solutions like MATLAB, Excel, or others, have the flexibility to create and import any waveform you desire. Waveforms created in any of these packages can be imported and played back in the AWG5200, seamlessly transitioning from the simulation world to the real world.

Advanced remote instrument control and waveform generation

The new SourceXpress platform brings all of your AWG instrument control and waveform generation capabilities to your Microsoft[®] Windows PC. Load waveforms, create sequences, and enable playback without ever having to touch an AWG. All waveform creation plug-ins run natively on the SourceXpress platform, allowing you to quickly iterate through test signals without having to set foot in the lab.

RF signal generation

RF signals are becoming more and more complex, making it difficult for RF engineers to accurately create the signals required for conformance and margin testing. When combined with the RF Generic waveform creation plug-in, the AWG5200 Series can address these tough design challenges. The RF Generic plug-in is a software package that digitally synthesizes modulated baseband, IF, and RF signals taking signal generation to new levels by fully exploiting the advanced signal generation capabilities of the AWG5200 Series arbitrary waveform generators.

& Carelo A	AssetPlug
Index Start End	
2 8.000 GHz 8.400 GHz	
4	
5 V	
7G 8G 9G 10G	
3	d Notch(==) 1 Not

Built in digital IQ modulator

Reducing the size and cost for telecommunication and military systems is driving the evolution of modern DAC's to integrate more functionality into a single chip. Some of the more advanced high-speed DAC's also incorporate digital signal processing and conditioning functionalities such as digital interpolation, complex modulation, and numerically controlled oscillators (NCO). This enables direct generation of complex RF signals in an efficient and compact way. The Tektronix AWG5200 series features a digital complex modulator and multi-rate interpolation. With this internal IQ modulation feature, you remove the IQ mismatches that are attributed to external modulators and mixers. Also with this modulator, there is no in-band carrier feed-through, and there are no images. With its built in interpolators, it also affords the ability to create waveforms most efficiently reducing waveform size and compilation times as well as extending playback time.

Several DAC modes available

With the AWG5200 DAC there are several modes that enable you to output your signal at the cleanest portion of the DAC BW and frequency roll off positions.

Environment signal generation

The mission-critical nature of many radar signals requires that they coexist with standards-based commercial signals sharing the same spectrum without performance degradation. To meet this expectation, a radar designer has to thoroughly test all the corner cases at the design/debug stage. The AWG5200 offers the extreme flexibility and precision needed to play back these worst-case scenarios.

Specifications

All specifications are typical unless noted otherwise. All specifications apply to all models unless noted otherwise.

Hardware characteristics

Number of analog outputs	
AWG5202	2
AWG5204	4
AWG5208	8
Analog output connector type	SMA female
Analog output impedance	50 Ω
Number of marker outputs	
AWG5202	8
AWG5204	16
AWG5208	32
Resolution (nominal)	16 bits with no markers active, 15 bits with 1 marker active, 14 bits with 2 markers active, 13 bits with 3 markers active, 12 bits with 4 markers active
Waveform memory	2 GS/channel
Waveform granularity	1 sample
Waveform minimum size	2400 samples
Run modes	
Continuous	Waveform is continuously repeated
Triggered	Waveform is output only once after a trigger is received
Triggered Continuous	Waveform is continuously repeated after a trigger is received
Gated	Waveform is continuously repeated while the trigger is enabled
Sample rate (nominal)	300 S/s to 5 GS/s (10 GS/s Interpolated - Double Data Rate)
Sin(x)/x (-3dB)	2.22 GHz @ 5 GS/s, 4.44 GHz Interpolated @ 10 GS/s

Computer characteristics

Operating system / peripherals / IO	Microsoft [®] Windows OS		
	USB 2.0 compliant ports (2 front)		
	USB 3.0 compliant ports (4 rear)		
	RJ-45 Ethernet connector (rear panel) supports 10/100/1000BASE-T		
	VGA video (rear panel) for external monitor		
	eSATA (rear panel)		
Display characteristics	LED backlit touch screen display, 165 mm (6.5 in.) diagonal, 1024 × 768 XGA		
Software driver for third-party	IVI-COM driver		
applications	IVI-C driver		

Analog output characteristics

Effective frequency output	Fmaximum (specified) is determined as "sample rate / oversampling rate" or "SR / 2.5". 2 GHz
	4 GHz (Double Data Rate - DDR mode)
DC HBW output	Amplitude levels are measured as singled-ended outputs. Output doubles when using differential (both) outputs.
Amplitude range	25 mV $_{p\text{-}p}$ to 0.75 V $_{p\text{-}p}$ (single ended, 50 Ω terminated)
	50 mV $_{p\text{-}p}$ to 1.5 V $_{p\text{-}p}$ (differential mode, 100 Ω terminated)
Amplitude accuracy	$\pm 2\%$ of setting $\geq 100 \text{ mV}_{p-p}$
(guaranteed)	\pm 5% of setting < 100 mV _{p-p}
Offset	± 2 V (50 Ω into gnd), ± 4 V into DC voltage terminated
Offset accuracy	\pm (2% of offset + 10 mV); into 50 Ω to Gnd. (Common mode, guaranteed.)
	± 25 mV; into 100 Ω differential. (Differential mode.)
Analog bandwidth (@	DC to 2 GHz (-3 dB), DC to 4 GHz (-6 dB)
750 mV _{p-p}) Rise/fall time	Rise/fall time measured at 20% to 80% levels.
	< 110 ps at 750 mV _{p-p} single-ended
	< The ps at 750 mVp-p single-ended
DC HBW Amplified output (option)	Amplitude levels are measured as singled-ended outputs. Output doubles when using differential (both) outputs.
Amplitude range	25 mV $_{p\text{-}p}$ to 1.5 V $_{p\text{-}p}$ (single ended, 50 Ω terminated)
	50 mV $_{p\text{-}p}$ to 3.0 V $_{p\text{-}p}$ (differential mode, 100 Ω terminated)
Amplitude accuracy	$\pm 2\%$ of setting $\geq 100 \text{ mV}_{p-p}$
(guaranteed)	\pm 5% of setting < 100 mV _{p-p}
Offset	± 2 V (50 Ω into gnd), ± 4 V into DC voltage terminated
Offset accuracy	\pm (2% of offset + 10 mV); into 50 Ω to Gnd. (Common mode, guaranteed.)
	±25 mV; into 100 Ω differential. (Differential mode.)
Analog bandwidth	DC to 1.3 GHz (-3 dB), DC to 2.6 GHz (-6 dB) (at 1.5 V _{p-p})
Rise/fall time	Rise/fall time measured at 20% to 80% levels.
	< 180 ps at 1.5 V_{p-p} single-ended
DC High Voltage output (option)	Amplitude levels are measured as singled-ended outputs. Output doubles when using differential (both) outputs.
Amplitude range	10 mV _{p-p} to 5.0 V _{p-p} (single ended, 50 Ω terminated)
	20 mV _{p-p} to 10.0 V _{p-p} (differential mode, 100 Ω terminated)
Amplitude accuracy	$\pm 2\%$ of setting $\geq 160 \text{ mV}_{p-p}$
(guaranteed)	\pm 5% of setting < 160 mV _{p-p}
Offset	± 2 V (50 Ω into gnd), ± 4 V into DC voltage terminated
Offset accuracy	±(2% of offset + 1% of amplitude + 20 mV). (Common mode guaranteed.)
	\pm 88 mV; into 100 Ω . (Differential mode.)
Analog bandwidth	DC – 370 MHz (-3 dB) (at 2 V _{p-p}) DC – 200 MHz (-3 dB) (at 4 V _{p-p})
Rise/fall time	Rise/fall time measured at 20% to 80% levels.
	< 1.3 ns, at 5 V_{p-p} single-ended.
	< 1.1 ns, at 4 V _{p-p} single-ended.
	< 0.8 ns, at 3 V_{p-p} single-ended.
	< 0.6 ns, at 2 V_{p-p} single-ended.
	PF ~

Analog output characteristics

AC Direct output	Amplitude levels are measured as singled-ended outputs.			
Amplitude range	-17 dBm to -5 dBm			
Amplitude accuracy	±0.5 dBm at 100 MHz			
DC bias	±5 V at 150 mA			
DC bias accuracy (guaranteed)	±(2% of bias + 20 mV); into an open circuit (zero load current)			
Analog bandwidth	10 MHz - 2 GHz (-3 dB), 10 MHz - 4 GHz (-6 dB)			
AC Amplified output (option)	Amplitude levels are measured as singled-ended o	utputs.		
Amplitude range	-85 dBm to +10 dBm (10 MHz to 3.5 GHz)			
	-50 dBm to +10 dBm (>3.5 GHz to 5 GHz)			
Amplitude accuracy	±0.5 dBm at 100 MHz			
DC bias	±5 V at 150 mA			
DC bias accuracy (guaranteed)	±(2% of bias + 20 mV); into an open circuit (zero load current)			
Analog bandwidth	10 MHz - 2 GHz (-3 dB), 10 MHz - 4 GHz (-6 dB)			
	Mathematically corrected for characteristic Sin (x)/x roll-off, uncorrected by external calibration methods.			
Output match VSWR	Mathematically corrected for characteristic Sin (x)/	roll-off, uncorrected by external calibration methods.		
Output match VSWR	Mathematically corrected for characteristic Sin (x)/	croll-off, uncorrected by external calibration methods. Specification		
Output match VSWR				
Output match VSWR	Output path	Specification DC to 1 GHz < 1.4:1		
Output match VSWR	Output path DC HBW	Specification DC to 1 GHz < 1.4:1		

Channel timing characteristics

os
5
S

Sequencer characteristics

Maximum sequencing steps	16,384
Sub sequencing	Single level of depth

Spurious Free Dynamic Range (SFDR) characteristics

SFDR characteristics

SFDR is determined as a function of the directly generated carrier frequency.

Harmonics not included. Measured with a balun and with output amplitude set to 500 mV.

DC Direct Out

2.5 GS/s		In band performance		performance Adjacent band performance	
	Analog channel output frequency	Measured across	Specification	Measured across	Specification
	100 MHz	10 – 500 MHz	-80 dBc	0.01 – 1.25 GHz	-72 dBc
	10 – 625 MHz	10 – 625 MHz	-70 dBc	0.01 – 1.25 GHz	-62 dBc
	0.01 – 1 GHz	0.01 – 1 GHz	-60 dBc	0.01 – 1.25 GHz	–58 dBc
	1 – 1.25 GHz	1 – 1.25 GHz	-60 dBc	0.01 – 1.25 GHz	-54 dBc
5 GS/s		In band performance	ce	Adjacent band perf	ormance
	Analog channel output frequency	Measured across	Specification	Measured across	Specification
	100 MHz	0.01 – 1 GHz	-80 dBc	0.01 – 2.5 GHz	-72 dBc
	0.01 – 1.25 GHz	0.01 – 1.25 GHz	-70 dBc	0.01 – 2.5 GHz	-62 dBc
	0.01 – 2 GHz	0.01 – 2 GHz	-60 dBc	0.01 – 2.5 GHz	-58 dBc
	2 – 2.5 GHz	2 – 2.5 GHz	-60 dBc	0.01 – 2.5 GHz	-54 dBc
10 GS/s		In band performance		Adjacent band performance	
	Analog channel output frequency	Measured across	Specification	Measured across	Specification
	100 MHz	0.01 – 1 GHz	-80 dBc	0.01 – 5 GHz	-72 dBc
	0.01 – 1.25 GHz	0.01 – 1.25 GHz	-70 dBc	0.01 – 5 GHz	–57 dBc
	0.01 – 2 GHz	0.01 – 2 GHz	-60 dBc	0.01 – 5 GHz	–57 dBc
	2 – 3.5 GHz	2 – 3.5 GHz	-60 dBc	0.01 – 5 GHz	-54 dBc
	3.5 – 4 GHz	3.5 – 4 GHz	–56 dBc	0.01 – 5 GHz	-50 dBc

AC Direct Out

Harmonics not included. Measured at the maximum output amplitude.

2.5 GS/s		In band performance		Adjacent band perf	ormance
	Analog channel output frequency	Measured across	Specification	Measured across	Specification
	100 MHz	10 – 500 MHz	-80 dBc	0.01 – 1.25 GHz	-72 dBc
	10 – 625 MHz	10 – 625 MHz	-70 dBc	0.01 – 1.25 GHz	-62 dBc
	0.01 – 1 GHz	0.01 – 1 GHz	-60 dBc	0.01 – 1.25 GHz	–58 dBc
	1 – 1.25 GHz	1 – 1.25 GHz	-60 dBc	0.01 – 1.25 GHz	–54 dBc
5 GS/s		In band performan	ce	Adjacent band perf	ormance
5 GS/s	Analog channel output frequency	In band performand Measured across	ce Specification	Adjacent band perf Measured across	ormance Specification
5 GS/s		-	1		
5 GS/s	output frequency	Measured across	Specification	Measured across	Specification
5 GS/s	output frequency 100 MHz	Measured across	Specification -80 dBc	Measured across	Specification -72 dBc

Spurious Free Dynamic Range (SFDR) characteristics

10 GS/s		In band performance		Adjacent band perf	ormance
	Analog channel output frequency	Measured across	Specification	Measured across	Specification
	100 MHz	0.01 – 1 GHz	-80 dBc	0.01 – 5 GHz	-72 dBc
	0.01 – 1.25 GHz	0.01 – 1.25 GHz	-70 dBc	0.01 – 5 GHz	-62 dBc
	0.01 – 2 GHz	0.01 – 2 GHz	-60 dBc	0.01 – 5 GHz	-58 dBc
	2 – 3.5 GHz	2 – 3.5 GHz	-60 dBc	0.01 – 5 GHz	-54 dBc
	3.5 – 4 GHz	3.5 – 4 GHz	–56 dBc	0.01 – 5 GHz	-50 dBc

Effective number of bits (ENOB)

Clock characteristics

Clock in		
Connector	SMA (rear panel)	
Input impedance	ut impedance 50 Ω, AC coupled	
Frequency range	2.5 GHz to 5 GHz	
Input amplitude	0 dBm to +10 dBm	
Clock output		
Connector	SMA on rear-panel	
Output impedance	50 Ω AC Coupled	
Frequency range	2.5 GHz to 5 GHz	
Output amplitude	+3 dBm to +10 dBm	
Sampling clock		
Resolution	Up to 8 digits	
Accuracy	Dependent on reference frequency accuracy	
Synchronization clock output	t	
Frequency	External clock output /32	
Amplitude	0.85 V to 1.25 V $_{\text{p-p}}$ into 50 Ω	
Connector	SMA (rear panel)	
Impedance	50 Ω , AC coupled	

Trigger in

Variable frequency range

Connector

Impedance

35 MHz to 240 MHz

SMA (rear panel)

50 Ω , AC coupled

00		
Inputs	2 (A and B)	
Polarity	Pos or Neg	
Impedance	50 Ω, 1 kΩ	
Input range	50 Ω: <5 V _{rms}	
	1 kΩ: ±10 V	
Connector	SMA (rear panel)	
Threshold	Range	-5.0 V to 5.0 V
	Resolution	0.1 V
	Accuracy	±(5% +100 mV)
Trigger Delay to Analog Output	Asynchronous	8760/ fclk +68 ns ± 20 ns
	Synchronous	8275 / fclk + 30 ns ±20 ns
Asynchronous Trigger Jitter	$1k \Omega$ is selected	440 ps _{p-p} for 2.5 GHz DAC sampling clock 240 ps _{p-p} for 5 GHz DAC sampling clock
	50 Ω is selected	420 ps_{p-p} , 24 ps_{rms} for 2.5 GHz DAC sampling clock 220 ps_{p-p} , 14 ps_{rms} for 5 GHz DAC sampling clock
Synchronous Trigger Jitter	Trigger synchronized to Internal or Ext Clock	300 fs _{rms}
	Trigger synchronized to Variable Reference	400 fs _{rms}
	Trigger synchronized to Fixed 10 MHz Reference	1.7 ps _{rms}
Trigger minimum pulse width	20 ns	
Trigger hold-off	>2 µs	
Reference in		
Input amplitude	–5 dBm to +5 dBm	
Fixed frequency range	10 MHz, ±40 Hz	

10 MHz reference

Connector	SMA (rear panel)
Impedance	50 Ω , AC coupled
Amplitude	+4 dBm ±2 dBm
Frequency (guaranteed)	Within ±(1 ppm + Aging), Aging: ±1 ppm per year

Auxiliary outputs (Flags)

Number	AWG5202: 4
	AWG5204: 4
	AWG5208: 8
Connector	SMB on rear-panel
Output amplitude	High 2.0 V into 50 Ω
	Low 0.7 V when sinking 10 mA
Output impedance	50 Ω

Markers

Number	AWG5202: Total of 8 (4 per channel)
	AWG5204: Total of 16 (4 per channel)
	AWG5208: Total of 32 (4 per channel)
Marker sample rate	2.5 GS/s to 5 GS/s
Minimum pulse width	400 ps
Max data rate	2.5 GS/s
Туре	Single-ended
Connector	SMA (rear panel)
Impedance	50 Ω
Output into 50 Ω	Window: -0.5 V to 1.7 V
	Amplitude: 200 mV to 1.75 V
	Resolution: 100 µV
Rise time	(20% - 80%): 150 ps
Skew between markers of the same channel	<25 ps
Delay control	±2 ns
Random jitter	5 ps

Pattern jump

Pin assignments	Pin		Pin		Pin	
	1	GND	6	GND	11	Data bit 5, input
	2	Data bit 0, input	7	Strobe, input	12	Data bit 6, input
	3	Data bit 1, input	8	GND	13	Data bit 7, input
	4	Data bit 2, input	9	GND	14	GND
	5	Data bit 3, input	10	Data bit 4, input	15	GND
Input levels	3.3 V LVCMOS 5 V TTL complian	t				
Number of destinations	256					
Strobe polarity	Negative edge					
Strobe Minimum Pulse Width	64 ns					
Strobe Setup and Hold	Setup: 5 ns					
	Hold: 5 ns					

Waveform capability

Waveform file import capability	Import waveform format by series:
	AWGX file created by Tektronix AWG5200/70000 Series
	AWG file created by Tektronix AWG5000 or AWG7000 Series
	.PAT and *.WFM file formats created by Tektronix AWG400/500/600/700 Series
	.IQT file format created by Tektronix RSA3000 Series
	.TIQ file format created by Tektronix RSA6000/5000 Series or MDO4000 Series
	.WFM or *.ISF file formats created by Tektronix TDS/DPO/MSO/DSA Series
	.TXT file format
	.MAT Matlab file format
	.SEQX file format created by Tektronix AWG5200 Series
	.SEQ file format created by the Tektronix AWG400/500/600/700 Series
	.TMP or .PRM file formats; Midas Blue (Data Type 1000/1001; Scalar and complex data; 8-,16-, 32-, and 64-bit integer and 32 and 64-bit float data format types)
Waveform file export capability	.WFMX file format, AWG5200/70000 series native format
	.WFM file format, AWG400/500/600/700 waveform file
	.TIQ file format, RSA6000 IQ Pair
	.TXT file format

Physical characteristics

Dimensions	
Height	153.6 mm (6.05 in)
Width	460.5 mm (18.13 in)
Depth	603 mm (23.76 in)
Weight	
AWG5202	44 lb (19.96 kg), 46.35 lb (21.02 kg) with packaging
AWG5204	45.45 lb (20.62 kg), 47.75 lb (21.66 kg) with packaging
AWG5208	50.7 lb (23 kg), 53 lb (24.04 kg) with packaging
Cooling clearance	
Тор	0 in
Bottom	0 in
Left side	50 mm (2 in)
Right side	50 mm (2 in)
Rear	0 in
Power supply	
AC line input	100 to 240 V AC, 50/60 Hz
Consumption	750 Watts, maximum

EMC, Environment, Safety

Temperature				
Operating	0 °C to +50 °C (+32 °F to +122 °F)			
Non-operating	-20 °C to +60 °C (-4 °F t	-20 °C to +60 °C (-4 °F to +140 °F)		
Humidity				
Operating	5% to 90% relative hum	idity (% RH) at up to 30 °C		
	5% to 45% relative hum	idity above 30 °C up to 50 °C		
	Non-condensing			
Non-operating	5% to 90% relative hum	idity (% RH) at up to 30 °C		
	5% to 45% relative hum	idity above 30 °C up to 60 °C		
	Non-condensing			
Altitude				
Operating	Up to 3,000 meters (9,843 feet)			
	Derate maximum operat	ting temperature by 1 °C per 300 meters above 1500 meters.		
Nonoperating	Up to 12,000 meters (39,370 feet)			
Mechanical shock				
Operating	Half-sine mechanical shocks, 30 g peak, 11 ms duration, 3 drops in each direction of each axis.			
Regulatory				
Safety	UL61010-1, CAN/CSA-22.2, No.61010-1-04, EN61010-1, IEC61010-1			
Emissions	EN55011 (Class A), IEC61000-3-2, IEC61000-3-3			
Immunity	IEC61326, IEC61000-4-2/3/4/5/6/8/11			
Regional certifications	Europe	Australia/New Zealand		
	EN61326	AS/NZS 2064		

Ordering information

AWG5200 family

AWG5202	16 bit, 2 GSamples/channel record length, 2-channel arbitrary waveform generator
AWG5200-225	2.5 GS/s
AWG5200-250	5 GS/s (10 GS/s interpolated)
AWG5200-2DC	High Bandwidth Amplified outputs
AWG5200-2HV	High Voltage outputs
AWG5200-2AC	AC Amplified outputs
AWG5200-2DIGUP	Digital up conversion (requires AWG5200-250)
AWG5200-SEQ	Sequencing
AWG5202-ACCY01	USB mouse, compact USB keyboard, touch screen stylus
AWG5204	16 bit, 2 GSamples/channel record length, 4-channel arbitrary waveform generator
AWG5200-425	2.5 GS/s
AWG5200-450	5 GS/s (10 GS/s interpolated)
AWG5200-4DC	High Bandwidth Amplified outputs
AWG5200-4HV	High Voltage outputs
AWG5200-4AC	AC Amplified outputs
AWG5200-4DIGUP	Digital up conversion (requires AWG5200-450)
AWG5200-SEQ	Sequencing
AWG5204-ACCY01	USB mouse, compact USB keyboard, touch screen stylus
AWG5208	16 bit, 2 GSamples/channel record length, 8-channel arbitrary waveform generator
AWG5200-825	2.5 GS/s
AWG5200-850	5 GS/s (10 GS/s interpolated)
AWG5200-8DC	High Bandwidth Amplified outputs
AWG5200-8HV	High Voltage outputs
AWG5200-8AC	AC Amplified outputs
AWG5200-8DIGUP	Digital up conversion (requires AWG5200-850)
AWG5200-SEQ	Sequencing
AWG5208-ACCY01	USB mouse, compact USB keyboard, touch screen stylus

Standard accessories¹

136-7162-xx	Two 50 Ω , 18 GHz, SMA terminators per channel
071-3529-xx	Installation and safety manual (English)
-	Certificate of calibration
_	Power cord

1 Specify power cord and language option at time of order

Options

Power plug options

Opt. A0	North America power plug (115 V, 60 Hz)
Opt. A1	Universal Euro power plug (220 V, 50 Hz)
Opt. A2	United Kingdom power plug (240 V, 50 Hz)
Opt. A3	Australia power plug (240 V, 50 Hz)
Opt. A4	North America power plug (240 V, 50 Hz)
Opt. A5	Switzerland power plug (220 V, 50 Hz)
Opt. A6	Japan power plug (100 V, 50/60 Hz)
Opt. A10	China power plug (50 Hz)
Opt. A11	India power plug (50 Hz)
Opt. A12	Brazil power plug (60 Hz)
Opt. A99	No power cord

Language options

Opt. L0	English manual
Opt. L5	Japanese manual
Opt. L7	Simplified Chinese manual
Opt. L8	Traditional Chinese manual
Opt. L10	Russian manual
Opt. L99	No manual

Service options

Opt. C3	Calibration Service 3 Years
Opt. C5	Calibration Service 5 Years
Opt. CA1	Single Calibration or Functional Verification
Opt. D1	Calibration Data Report
Opt. D3	Calibration Data Report 3 Years (with Opt. C3)
Opt. D5	Calibration Data Report 5 Years (with Opt. C5)
Opt. G3	Complete Care 3 Years (includes loaner, scheduled calibration, and more)
Opt. G5	Complete Care 5 Years (includes loaner, scheduled calibration, and more)
Opt. IF	Upgrade Installation Service
Opt. R3	Repair Service 3 Years (including warranty)
Opt. R5	Repair Service 5 Years (including warranty)

Post sales service options

CA1	Single calibration or functional verification
R5DW	Repair service coverage 5 years
R2PW	Repair service coverage 2 years post warranty
R1PW	Repair service coverage 1 year post warranty

Recommended accessories

Item	Description	Part number	
GPIB to USB Adapter	Enables GPIB control through USB B port	TEK-USB-488	
Power Splitters 1.5 kHz - 18 GHz		Mini-Circuits ZX10-2-183-S+	
	DC-18 GHz	Picosecond Pulse Labs 5331	
Amplifiers	2.5 kHz - 10 GHz, 26 dB gain	Picosecond Pulse Labs 5866	
	0.01 - 20 GHz, 30 dB gain	RF-Lambda RAMP00G20GA	
Adapter SMB female to SMA female		Mouser 565-72979	
Programmer manual	Programming commands, English only	Visit Tektronix website	

Rack mount kit

GF-RACK3U

Rack mount kit

Product upgrades

AWG5202					
AWG52UP Opt SSD		Provides an additional (or replacement) preprogrammed solid state drive			
	AWG5200-2-2550	Increases sampling rate from 2.5 GS/s to 5 GS/s (10 GS/s interpolated)			
	AWG5200-2DC	Adds DC High Bandwidth Amplified outputs			
	AWG5200-2HV	Adds DC High Voltage outputs (SN B020000 and above only)			
	AWG5200-2AC	Adds AC Amplified outputs			
	AWG5200-2DIGUP	Adds digital up conversion (requires AWG5200-250 or AWG5200-2-2550)			
	AWG5200-SEQ	Adds Sequencing			
AW	/G5204				
	AWG52UP Opt SSD	Provides an additional (or replacement) preprogrammed solid state drive			
	AWG5200-4-2550	Increases sampling rate from 2.5 GS/s to 5 GS/s (10 GS/s interpolated)			
	AWG5200-4DC	Adds DC High Bandwidth Amplified outputs			
	AWG5200-4HV	Adds DC High Voltage outputs (SN B020000 and above only)			
	AWG5200-4AC	Adds AC Amplified outputs			
	AWG5200-4DIGUP	Adds digital up conversion (requires AWG5200-450 or AWG5200-4-2550)			
	AWG5200-SEQ	Adds Sequencing			
AW	/G5208				
	AWG52UP Opt SSD	Provides an additional (or replacement) preprogrammed solid state drive			
	AWG5200-8-2550	Increases sampling rate from 2.5 GS/s to 5 GS/s (10 GS/s interpolated)			
	AWG5200-8DC	Adds DC High Bandwidth Amplified outputs			
	AWG5200-8HV	Adds DC High Voltage outputs (SN B020000 and above only)			
	AWG5200-8AC	Adds AC Amplified outputs			

AWG5200-8DIGUP AWG5200-SEQ Adds digital up conversion (requires AWG5200-850 or AWG5200-8-2550) Adds Sequencing

Plug-ins

Plug-ins increase the capabilities of the arbitrary waveform generators. Various plug-ins are available providing unique types of waveforms or additional compensation. Each plug-in has its own installation file which installs seamlessly into the generators. After installation, it simply becomes a new menu selection. No other configuration is necessary.

Plug-in	Description	Nomenclature	Licensed enhancements
Multitone & Chirp plug-in	Create generate chirps, notches and tones	MTONENL-SS01 MTONEFL-SS01	
PreCompensation plug-in	Create correction coefficients that can be applied on waveforms to get flat frequency and linear phase response	PRECOMNL-SS01 PRECOMFL-SS01	
High Speed Serial plug-in	Create pre-distorted waveforms to test a device's conformance to standards	HSSNL-SS01 HSSFL-SS01 HSSPACKNL-SS01 HSSPACKFL-SS01	S-Parameters and Intersymbol Interference Spread Spectrum Clocking (Licensed enhancements are included with HSSPACK)
RF Generic plug-in	Create digitally modulated signals with multiple carrier groups	RFGENNL-SS01 RFGENFL-SS01	S-Parameters
Optical plug-in	Create waveforms with complex modulation schemes for optical testing	OPTICALNL-SS01 OPTICALFL-SS01	S-Parameters Spread Spectrum Clocking
OFDM plug-in	Create Single or Multiple OFDM based Frames with one or more bursts	OFDMNL-SS01 OFDMFL-SS01	S-Parameters
RADAR plug-in	Create RADAR pulsed waveforms with various modulations and impairments	RADARNL-SS01 RADARFL-SS01	S-Parameters
Environment plug-in	Create real world scenarios for commercial, electronic warfare, and simulations for monitoring and receiver testing	ENVNL-SS01 ENVFL-SS01	
Spread Spectrum Clocking plug-in	Adds SSC capability to the High Speed Serial and Optical plug-ins	SSCFLNL-SS01 SSCFLFL-SS01	
S-Parameters plug-in	Adds S-Parameter capability to the RF Generic, High Speed Serial, Optical, OFDM, and RADAR plug-ins	SPARANL-SS01 SPARAFL-SS01	

Plug-ins require the purchase of a license before they are fully functional.

There are two types of licenses available for each plug-in: node-locked (NL) and floating (FL).

- Node Locked Licenses (NL) provide your own copy of the application on your instrument and are permanently assigned to a product model/serial number.
- Floating Licenses (FL) can be moved between product models.

Warranty

One-year parts and labor.

(SRI) (SRI)

Tektronix is registered to ISO 9001 and ISO 14001 by SRI Quality System Registrar.

Product(s) complies with IEEE Standard 488.1-1987, RS-232-C, and with Tektronix Standard Codes and Formats.

AWG5200 Series Arbitrary Waveform Generators

ASEAN / Australasia (65) 6356 3900 Belgium 00800 2255 4835* Central East Europe and the Baltics +41 52 675 3777 Finland +41 52 675 3777 Hong Kong 400 820 5835 Japan 81 (3) 6714 3086 Middle East, Asia, and North Africa +41 52 675 3777 People's Republic of China 400 820 5835 Republic of Korea +822 6917 5084, 822 6917 5080 Spain 00800 2255 4835* Taiwan 886 (2) 2656 6688 Austria 00800 2255 4835* Brazii +55 (11) 3759 7627 Central Europe & Greece +41 52 675 3777 France 00800 2255 4835* India 000 800 650 1835 Luxembourg +41 52 675 3777 The Netherlands 00800 2255 4835* Poland +41 52 675 3777 Russia & CIS +7 (495) 6647564 Sweden 00800 2255 4835* United Kingdom & Ireland 00800 2255 4835* Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777 Canada 1 800 833 9200 Denmark +45 80 88 1401 Germany 00800 2255 4835* Italy 00800 2255 4835* Mexico, Central/South America & Caribbean 52 (55) 56 04 50 90 Norway 800 16098 Portugal 80 08 12370 South Africa +41 52 675 3777 Switzerland 00800 2255 4835* USA 1 800 833 9200

* European toll-free number. If not accessible, call: +41 52 675 3777

For Further Information. Tektronix maintains a comprehensive, constantly expanding collection of application notes, technical briefs and other resources to help engineers working on the cutting edge of technology. Please visit www.tek.com.

Copyright [©] Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks, or registered trademarks of their respective companies.

18 May 2018 76W-60848-6

H)

www.tek.com

Tektronix[®]